Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

24. Using the notation of Exercise 23, show that \({A^T}{u_j} = {\sigma _j}{v_j}\) for \({\bf{1}} \le {\bf{j}} \le {\bf{r}} = {\bf{rank}}\;{\bf{A}}\)

Short Answer

Expert verified

It is verified that \({A^T}{{\bf{u}}_j} = {\sigma _j}{{\bf{v}}_j}\).

Step by step solution

01

Write the matrix 

As from exercise 23,\(A = {\sigma _1}{{\bf{u}}_{\bf{1}}}{\bf{v}}_{\bf{1}}^{\bf{T}} + {\sigma _2}{{\bf{u}}_2}{\bf{v}}_2^{\bf{T}} + ... + {\sigma _r}{{\bf{u}}_r}{\bf{v}}_r^{\bf{T}}\).

Then since \(1 \le j \le r = {\rm{rank}}\;A\)

02

Step 2: Compute the notation

Find the product

\(\begin{array}{c}{A^T}{{\bf{u}}_j} = {\left( {{\sigma _1}{{\bf{u}}_{\bf{1}}}{\bf{v}}_{\bf{1}}^{\bf{T}} + {\sigma _2}{{\bf{u}}_2}{\bf{v}}_2^{\bf{T}} + ... + {\sigma _r}{{\bf{u}}_r}{\bf{v}}_r^{\bf{T}}} \right)^T}{{\bf{u}}_j}\\ = \left( {{\sigma _1}{{\bf{v}}_{\bf{1}}}{\bf{u}}_{\bf{1}}^{\bf{T}} + ... + {\sigma _r}{{\bf{v}}_r}{\bf{u}}_r^{\bf{T}}} \right){{\bf{u}}_j}\\ = \left( {{\sigma _j}{{\bf{v}}_j}{\bf{u}}_j^{\bf{T}}} \right){{\bf{u}}_j}\\ = {\sigma _j}{{\bf{v}}_j}\end{array}\)

Hence, \({A^T}{{\bf{u}}_j} = {\sigma _j}{{\bf{v}}_j}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

20. \(\left( {\begin{aligned}{{}}5&8&{ - 4}\\8&5&{ - 4}\\{ - 4}&{ - 4}&{ - 1}\end{aligned}} \right)\)

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

37. \(\left( {\begin{aligned}{{}}{\bf{6}}&{\bf{2}}&{\bf{9}}&{ - {\bf{6}}}\\{\bf{2}}&{\bf{6}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{9}}&{ - {\bf{6}}}&{\bf{6}}&{\bf{2}}\\{\bf{6}}&{\bf{9}}&{\bf{2}}&{\bf{6}}\end{aligned}} \right)\)

Question: In Exercises 1 and 2, convert the matrix of observations to mean deviation form, and construct the sample covariance matrix.

\(1.\,\,\left( {\begin{array}{*{20}{c}}{19}&{22}&6&3&2&{20}\\{12}&6&9&{15}&{13}&5\end{array}} \right)\)

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

22. Show that if \(A\) is an \(n \times n\) positive definite matrix, then an orthogonal diagonalization \(A = PD{P^T}\) is a singular value decomposition of \(A\).

Show that if A is an \(n \times n\) symmetric matrix, then \(\left( {A{\bf{x}}} \right) \cdot {\bf{y}} = {\bf{x}} \cdot \left( {A{\bf{y}}} \right)\) for x, y in \({\mathbb{R}^n}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free