Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

23. Let \(U = \left( {{u_1}...{u_m}} \right)\) and \(V = \left( {{v_1}...{v_n}} \right)\) where the \({{\bf{u}}_i}\) and \({{\bf{v}}_i}\) are in Theorem 10. Show that \(A = {\sigma _1}{u_1}v_1^T + {\sigma _2}{u_2}v_2^T + ... + {\sigma _r}{u_r}v_r^T\).

Short Answer

Expert verified

It is verified that \(A = {\sigma _1}{{\bf{u}}_{\bf{1}}}{\bf{v}}_{\bf{1}}^{\bf{T}} + {\sigma _2}{{\bf{u}}_2}{\bf{v}}_2^{\bf{T}} + ... + {\sigma _r}{{\bf{u}}_r}{\bf{v}}_r^{\bf{T}}\).

Step by step solution

01

Write the matrix 

It is given that, \(U = \left( {{{\bf{u}}_{\bf{1}}}...{{\bf{u}}_{\bf{m}}}} \right)\) and \(V = \left( {{{\bf{v}}_{\bf{1}}}...{{\bf{v}}_{\bf{n}}}} \right)\)

Therefore, \({V^T} = \left( {\begin{array}{*{20}{c}}{{\bf{v}}_1^T}\\{{\bf{v}}_n^T}\end{array}} \right)\)

02

Step 2: Compute the matrix A from SVD:

From theorem 10,\(U\sum = \left\{ {\left( {{\sigma _1}{{\bf{u}}_1}...{\sigma _r}{{\bf{u}}_r}} \right)} \right\}\)where\(r\)is the rank of the matrix\(A\), thus find\(A = U\sum {V^T}\).

\(\begin{array}{c}A = U\sum {V^T}\\ = \left\{ {\left( {{\sigma _1}{{\bf{u}}_1}...{\sigma _r}{{\bf{u}}_r}} \right)} \right\}\left( {\begin{array}{*{20}{c}}{{\bf{v}}_1^T}\\{{\bf{v}}_n^T}\end{array}} \right)\\ = {\sigma _1}{{\bf{u}}_{\bf{1}}}{\bf{v}}_{\bf{1}}^{\bf{T}} + {\sigma _2}{{\bf{u}}_2}{\bf{v}}_2^{\bf{T}} + ... + {\sigma _r}{{\bf{u}}_r}{\bf{v}}_r^{\bf{T}}\end{array}\)

Hence, \(A = {\sigma _1}{{\bf{u}}_{\bf{1}}}{\bf{v}}_{\bf{1}}^{\bf{T}} + {\sigma _2}{{\bf{u}}_2}{\bf{v}}_2^{\bf{T}} + ... + {\sigma _r}{{\bf{u}}_r}{\bf{v}}_r^{\bf{T}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 1 and 2, convert the matrix of observations to mean deviation form, and construct the sample covariance matrix.

\(1.\,\,\left( {\begin{array}{*{20}{c}}{19}&{22}&6&3&2&{20}\\{12}&6&9&{15}&{13}&5\end{array}} \right)\)

Determine which of the matrices in Exercises 1–6 are symmetric.

2. \(\left( {\begin{aligned}{{}}3&{\,\, - 5}\\{ - 5}&{ - 3}\end{aligned}} \right)\)

Question: Repeat Exercise 15 for the following SVD of a \({\bf{3 \times 4}}\) matrix \(A\):

\(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{.86}}}&{ - {\bf{.11}}}&{ - {\bf{.50}}}\\{{\bf{.31}}}&{{\bf{.68}}}&{ - {\bf{.67}}}\\{{\bf{.41}}}&{ - {\bf{.73}}}&{ - {\bf{5}}{\bf{.5}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{\bf{12}}{\bf{.48}}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{{\bf{6}}{\bf{.34}}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right){\bf{ \times }}\left( {\begin{array}{*{20}{c}}{{\bf{.66}}}&{ - {\bf{.03}}}&{ - {\bf{.35}}}&{{\bf{.66}}}\\{ - {\bf{1}}{\bf{.3}}}&{ - {\bf{.90}}}&{ - {\bf{.39}}}&{ - {\bf{.13}}}\\{{\bf{.65}}}&{{\bf{.08}}}&{ - {\bf{.16}}}&{ - {\bf{.73}}}\\{ - {\bf{.34}}}&{{\bf{.42}}}&{ - {\bf{8}}{\bf{.4}}}&{ - {\bf{0}}{\bf{.8}}}\end{array}} \right)\)

Question: 11. Given multivariate data \({X_1},................,{X_N}\) (in \({\mathbb{R}^p}\)) in mean deviation form, let \(P\) be a \(p \times p\) matrix, and define \({Y_k} = {P^T}{X_k}{\rm{ for }}k = 1,......,N\).

  1. Show that \({Y_1},................,{Y_N}\) are in mean-deviation form. (Hint: Let \(w\) be the vector in \({\mathbb{R}^N}\) with a 1 in each entry. Then \(\left( {{X_1},................,{X_N}} \right)w = 0\) (the zero vector in \({\mathbb{R}^p}\)).)
  2. Show that if the covariance matrix of \({X_1},................,{X_N}\) is \(S\), then the covariance matrix of \({Y_1},................,{Y_N}\) is \({P^T}SP\).

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

19. \(\left( {\begin{aligned}{{}}3&{ - 2}&4\\{ - 2}&6&2\\4&2&3\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free