Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) ,

\(\)

where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

18. Suppose \(A\) is square and invertible. Find a singular value decomposition of \({A^{ - 1}}\)

Short Answer

Expert verified

The required singular decomposition of \({A^{ - 1}}\) is \(V\mathop \Sigma \limits^{ - 1} {U^T}\).

Step by step solution

01

Find \(A\)

It is given that\(A\)is square and invertible. As the matrix\(V\)is an orthogonal matrix,\({V^T} = {V^{ - 1}}\), then we have,

\(\begin{array}{c}A = U\Sigma {V^T}\\ = U\Sigma {V^{ - 1}}\end{array}\)

02

Find the singular value decomposition of the matrix \({A^{ - 1}}\)

\(\begin{array}{c}{A^{ - 1}} = {\left( {U\Sigma {V^{ - 1}}} \right)^{ - 1}}\\ = V\mathop \Sigma \limits^{ - 1} {U^{ - 1}}\\ = V\mathop \Sigma \limits^{ - 1} {U^T}\end{array}\)

Therefore, \({A^{ - 1}} = V\mathop \Sigma \limits^{ - 1} {U^T}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 11. Given multivariate data \({X_1},................,{X_N}\) (in \({\mathbb{R}^p}\)) in mean deviation form, let \(P\) be a \(p \times p\) matrix, and define \({Y_k} = {P^T}{X_k}{\rm{ for }}k = 1,......,N\).

  1. Show that \({Y_1},................,{Y_N}\) are in mean-deviation form. (Hint: Let \(w\) be the vector in \({\mathbb{R}^N}\) with a 1 in each entry. Then \(\left( {{X_1},................,{X_N}} \right)w = 0\) (the zero vector in \({\mathbb{R}^p}\)).)
  2. Show that if the covariance matrix of \({X_1},................,{X_N}\) is \(S\), then the covariance matrix of \({Y_1},................,{Y_N}\) is \({P^T}SP\).

Question:Find the principal components of the data for Exercise 1.

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

19. Show that the columns of\(V\)are eigenvectors of\({A^T}A\), the columns of\(U\)are eigenvectors of\(A{A^T}\), and the diagonal entries of\({\bf{\Sigma }}\)are the singular values of \(A\). (Hint: Use the SVD to compute \({A^T}A\) and \(A{A^T}\).)

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

14. \({\bf{3}}x_{\bf{1}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}}\)

Question: 13. Exercises 12–14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

Suppose the equation\(A{\rm{x}} = {\rm{b}}\)is consistent, and let\({{\rm{x}}^ + } = {A^ + }{\rm{b}}\). By Exercise 23 in Section 6.3, there is exactly one vector\({\rm{p}}\)in Row\(A\)such that\(A{\rm{p}} = {\rm{b}}\). The following steps prove that\({{\rm{x}}^ + } = {\rm{p}}\)and\({{\rm{x}}^ + }\)is the minimum length solution of\(A{\rm{x}} = {\rm{b}}\).

  1. Show that \({{\rm{x}}^ + }\) is in Row \(A\). (Hint: Write \({\rm{b}}\) as \(A{\rm{x}}\) for some \({\rm{x}}\), and use Exercise 12.)
  2. Show that\({{\rm{x}}^ + }\)is a solution of\(A{\rm{x}} = {\rm{b}}\).
  3. Show that if \({\rm{u}}\) is any solution of \(A{\rm{x}} = {\rm{b}}\), then \(\left\| {{{\rm{x}}^ + }} \right\| \le \left\| {\rm{u}} \right\|\), with equality only if \({\rm{u}} = {{\rm{x}}^ + }\).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free