Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

17. Show that if \(A\) is square, then \(\left| {{\bf{det}}A} \right|\) is the product of the singular values of \(A\).

Short Answer

Expert verified

It is verified that if \(A\) is square then \(\left| {\det A} \right|\) is the product of singular values of \(A\).

Step by step solution

01

Find the determinant of \(U\)

Since\(A\)is a square matrix, its singular matrix is also square.

Therefore the determinant is as follow:

\(\begin{array}{c}U{U^T} = I\\Det\left( {U{U^T}} \right) = Det\left( I \right)\\ = Det\left( I \right)\\ = 1\end{array}\)

Apply the distributive property.

\(\begin{array}{c}Det\left( U \right)Det\left( {{U^T}} \right) = I\\{\left( {Det\left( U \right)} \right)^2} = 1\\Det\left( U \right) = \pm 1\end{array}\)

02

Find the determinant of \(V\)

The determinant is as follow:

\(\begin{array}{c}V{V^T} = I\\Det\left( {{V^T}V} \right) = Det\left( {V{V^T}} \right)\\ = Det\left( I \right)\\ = 1\end{array}\)

Apply the distributive property.

\(\begin{array}{c}Det\left( V \right)Det\left( {{V^T}} \right) = I\\{\left( {Det\left( V \right)} \right)^2} = 1\\Det\left( V \right) = \pm 1\end{array}\)

03

Find the determinant of \(A\)

As \(A = U\Sigma {V^T}\)

Apply the determinant on both sides of\(A = U\Sigma {V^T}\)and simplify.

\(\begin{array}{c}{\rm{Det}}A = {\rm{Det}}\left( {U\Sigma {V^T}} \right)\\ = {\rm{Det}}\left( U \right){\rm{Det}}\left( \Sigma \right){\rm{Det}}\left( {{V^T}} \right)\\ = \left( { \pm 1} \right){\rm{Det}}\left( \Sigma \right)\left( { \pm 1} \right)\\ = \left( { \pm 1} \right) \cdot {\rm{Product of singular values of }}A\end{array}\)

Thus,\(\left| {{\rm{Det}}A} \right| = {\rm{Product of singular values of }}A\)

Hence Proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Mark Each statement True or False. Justify each answer. In each part, A represents an \(n \times n\) matrix.

  1. If A is orthogonally diagonizable, then A is symmetric.
  2. If A is an orthogonal matrix, then A is symmetric.
  3. If A is an orthogonal matrix, then \(\left\| {A{\bf{x}}} \right\| = \left\| {\bf{x}} \right\|\) for all x in \({\mathbb{R}^n}\).
  4. The principal axes of a quadratic from \({{\bf{x}}^T}A{\bf{x}}\) can be the columns of any matrix P that diagonalizes A.
  5. If P is an \(n \times n\) matrix with orthogonal columns, then \({P^T} = {P^{ - {\bf{1}}}}\).
  6. If every coefficient in a quadratic form is positive, then the quadratic form is positive definite.
  7. If \({{\bf{x}}^T}A{\bf{x}} > {\bf{0}}\) for some x, then the quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is positive definite.
  8. By a suitable change of variable, any quadratic form can be changed into one with no cross-product term.
  9. The largest value of a quadratic form \({{\bf{x}}^T}A{\bf{x}}\), for \(\left\| {\bf{x}} \right\| = {\bf{1}}\) is the largest entery on the diagonal A.
  10. The maximum value of a positive definite quadratic form \({{\bf{x}}^T}A{\bf{x}}\) is the greatest eigenvalue of A.
  11. A positive definite quadratic form can be changed into a negative definite form by a suitable change of variable \({\bf{x}} = P{\bf{u}}\), for some orthogonal matrix P.
  12. An indefinite quadratic form is one whose eigenvalues are not definite.
  13. If P is an \(n \times n\) orthogonal matrix, then the change of variable \({\bf{x}} = P{\bf{u}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form whose matrix is \({P^{ - {\bf{1}}}}AP\).
  14. If U is \(m \times n\) with orthogonal columns, then \(U{U^T}{\bf{x}}\) is the orthogonal projection of x onto ColU.
  15. If B is \(m \times n\) and x is a unit vector in \({\mathbb{R}^n}\), then \(\left\| {B{\bf{x}}} \right\| \le {\sigma _{\bf{1}}}\), where \({\sigma _{\bf{1}}}\) is the first singular value of B.
  16. A singular value decomposition of an \(m \times n\) matrix B can be written as \(B = P\Sigma Q\), where P is an \(m \times n\) orthogonal matrix and \(\Sigma \) is an \(m \times n\) diagonal matrix.
  17. If A is \(n \times n\), then A and \({A^T}A\) have the same singular values.

Question: In Exercises 15 and 16, construct the pseudo-inverse of \(A\). Begin by using a matrix program to produce the SVD of \(A\), or, if that is not available, begin with an orthogonal diagonalization of \({A^T}A\). Use the pseudo-inverse to solve \(A{\rm{x}} = {\rm{b}}\), for \({\rm{b}} = \left( {6, - 1, - 4,6} \right)\) and let \(\mathop {\rm{x}}\limits^\^ \)be the solution. Make a calculation to verify that \(\mathop {\rm{x}}\limits^\^ \) is in Row \(A\). Find a nonzero vector \({\rm{u}}\) in Nul\(A\), and verify that \(\left\| {\mathop {\rm{x}}\limits^\^ } \right\| < \left\| {\mathop {\rm{x}}\limits^\^ + {\rm{u}}} \right\|\), which must be true by Exercise 13(c).

16. \(A = \left( {\begin{array}{*{20}{c}}4&0&{ - 1}&{ - 2}&0\\{ - 5}&0&3&5&0\\{\,\,\,2}&{\,\,0}&{ - 1}&{ - 2}&0\\{\,\,\,6}&{\,\,0}&{ - 3}&{ - 6}&0\end{array}} \right)\)

Let A be the matrix of the quadratic form

\({\bf{9}}x_{\bf{1}}^{\bf{2}} + {\bf{7}}x_{\bf{2}}^{\bf{2}} + {\bf{11}}x_{\bf{3}}^{\bf{2}} - {\bf{8}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{8}}{x_{\bf{1}}}{x_{\bf{3}}}\)

It can be shown that the eigenvalues of A are 3,9, and 15. Find an orthogonal matrix P such that the change of variable \({\bf{x}} = P{\bf{y}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form which no cross-product term. Give P and the new quadratic form.

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

17. \(\left( {\begin{aligned}{{}}1&{ - 6}&4\\{ - 6}&2&{ - 2}\\4&{ - 2}&{ - 3}\end{aligned}} \right)\)

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

23. Let \(U = \left( {{u_1}...{u_m}} \right)\) and \(V = \left( {{v_1}...{v_n}} \right)\) where the \({{\bf{u}}_i}\) and \({{\bf{v}}_i}\) are in Theorem 10. Show that \(A = {\sigma _1}{u_1}v_1^T + {\sigma _2}{u_2}v_2^T + ... + {\sigma _r}{u_r}v_r^T\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free