Chapter 7: Q7.4-12E (page 395)
Question: Find an SVD of each matrix in Exercise 5-12. (Hint: In Exercise 11, one choice for U is \(\left( {\begin{array}{*{20}{c}}{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right)\). In Exercise 12, one column of U can be \(\left( {\begin{array}{*{20}{c}}{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\\{ - \frac{{\bf{2}}}{{\sqrt {\bf{6}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\end{array}} \right)\).
12. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}\\{ - {\bf{1}}}&{\bf{1}}\end{array}} \right)\)
Short Answer
The singular value decomposition of \(A\) is, \(A = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 3 }}}&0&{ - 2\sqrt 6 }\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\sqrt 3 }&0\\0&{\sqrt 2 }\\0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right)\).