Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Find an SVD of each matrix in Exercise 5-12. (Hint: In Exercise 11, one choice for U is \(\left( {\begin{array}{*{20}{c}}{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}\\{\frac{{\bf{2}}}{{\bf{3}}}}&{\frac{{\bf{2}}}{{\bf{3}}}}&{ - \frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right)\). In Exercise 12, one column of U can be \(\left( {\begin{array}{*{20}{c}}{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\\{ - \frac{{\bf{2}}}{{\sqrt {\bf{6}} }}}\\{\frac{{\bf{1}}}{{\sqrt {\bf{6}} }}}\end{array}} \right)\).

12. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}\\{ - {\bf{1}}}&{\bf{1}}\end{array}} \right)\)

Short Answer

Expert verified

The singular value decomposition of \(A\) is, \(A = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 3 }}}&0&{ - 2\sqrt 6 }\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\sqrt 3 }&0\\0&{\sqrt 2 }\\0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right)\).

Step by step solution

01

The Singular Value Decomposition

Consider \(m \times n\) matrix with rank \(r\) as \(A\). There is a \(m \times n\) matrix \(\sum \) as seen in (3) wherein the diagonal entriesin \(D\) are the first \(r\) singular valuesof A, \({\sigma _1} \ge \cdots \ge {\sigma _r} > 0,\) and there arises an \(m \times m\) orthogonal matrix \(U\) and an \(n \times n\) orthogonal matrix \(V\) such that \(A = U\sum {V^T}\).

02

Find the eigenvalues of the given matrix

Let \(A = \left( {\begin{array}{*{20}{c}}1&1\\0&1\\{ - 1}&1\end{array}} \right)\). The transpose of A is:

\({A^T} = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}\\1&1&1\end{array}} \right)\)

Find the product \({A^T}A\).

\(\begin{array}{c}{A^T}A = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}\\1&1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&1\\0&1\\{ - 1}&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&0\\0&3\end{array}} \right)\end{array}\)

The characteristic equation for \({A^T}A\) is:

\(\begin{array}{c}\det \left| {{A^T}A - \lambda I} \right| = 0\\\left| {\begin{array}{*{20}{c}}{2 - \lambda }&0\\0&{3 - \lambda }\end{array}} \right| = 0\\\lambda = 2,3\end{array}\)

03

Find the eigenvectors of given matrix

The eigenvectors of the matrix for \(\lambda = 2\) are:

\(\begin{array}{c}\left( {{A^T}A - \lambda I} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\\left( {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\0{x_1} + {x_2} = 0\end{array}\)

The general solution is:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \,\left( {\begin{array}{*{20}{c}}0\\1\end{array}} \right)\)

The eigenvectors of the matrix for \(\lambda = 3\) are:

\(\begin{array}{c}\left( {{A^T}A - \lambda I} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\\left( {\begin{array}{*{20}{c}}{ - 1}&0\\0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = 0\\ - {x_1} + 0{x_2} = 0\end{array}\)

The general solution is:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \,\left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right)\)

04

Find the Eigenvector matrix

Normalize the eigenvector \(\left( {\begin{array}{*{20}{c}}0\\1\end{array}} \right)\) is:

\(\begin{array}{c}{{\bf{v}}_1} = \frac{1}{{\sqrt {{0^2} + {1^2}} }}\left( {\begin{array}{*{20}{c}}0\\1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}0\\1\end{array}} \right)\end{array}\)

Normalize the eigenvector \(\left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right)\) is:

\(\begin{array}{c}{{\bf{v}}_2} = \frac{1}{{\sqrt {{1^2} + {0^2}} }}\left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right)\end{array}\)

The eigenvector matrix is:

\(\begin{array}{c}V = \left( {\begin{array}{*{20}{c}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right)\end{array}\)

05

Find the value of \(\Sigma \)

The singular value is the square root of eigenvalues of \({A^T}A\) i.e. \(\sqrt 3 \) and \(\sqrt 2 \). Thus, the matrix \(\Sigma \) is:

\(\Sigma = \left( {\begin{array}{*{20}{c}}{\sqrt 3 }&0\\0&{\sqrt 2 }\\0&0\end{array}} \right)\)

06

Find the matrix U

Find the column vector \({{\bf{u}}_1}\):

\(\begin{array}{c}{{\bf{u}}_1} = \frac{1}{{\sqrt {{\lambda _1}} }}A{{\bf{v}}_1}\\ = \frac{1}{{\sqrt 3 }}\left( {\begin{array}{*{20}{c}}1&1\\0&1\\{ - 1}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}0\\1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}\end{array}} \right)\end{array}\)

And

\(\begin{array}{c}{{\bf{u}}_2} = \frac{1}{{\sqrt {{\lambda _2}} }}A{{\bf{v}}_2}\\ = \frac{1}{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}}1&1\\0&1\\{ - 1}&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 2 }}}\\0\\{ - \frac{1}{{\sqrt 2 }}}\end{array}} \right)\end{array}\)

The vector \({{\bf{u}}_3}\) is orthogonal to \({{\bf{u}}_1}\) and \({{\bf{u}}_2}\). Therefore,

\(\begin{array}{c}{\bf{u}}_1^T{\bf{x}} = 0\\{x_1} + {x_2} + {x_3} = 0\end{array}\)

And

\(\begin{array}{c}{\bf{u}}_2^T{\bf{x}} = 0\\{x_1} + 0{x_2} - {x_3} = 0\end{array}\)

Then,

\({{\bf{u}}_3} = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 6 }}}\\{ - \frac{2}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 6 }}}\end{array}} \right)\)

The matrix U can be written as,

\(U = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 3 }}}&0&{ - 2\sqrt 6 }\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\end{array}} \right)\)

The SVD of A can be written as,

\(\begin{array}{c}A = U\Sigma {V^T}\\ = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 3 }}}&0&{ - 2\sqrt 6 }\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\sqrt 3 }&0\\0&{\sqrt 2 }\\0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right)\end{array}\)

Hence, the SVD of the given matrix is, \(A = \left( {\begin{array}{*{20}{c}}{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 3 }}}&0&{ - 2\sqrt 6 }\\{\frac{1}{{\sqrt 3 }}}&{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 6 }}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\sqrt 3 }&0\\0&{\sqrt 2 }\\0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Orthogonally diagonalize the matrices in Exercises 13โ€“22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17โ€“22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

21. \(\left( {\begin{aligned}{{}}4&3&1&1\\3&4&1&1\\1&1&4&3\\1&1&3&4\end{aligned}} \right)\)

Question 8: Use Exercise 7 to show that if A is positive definite, then A has a LU factorization, \(A = LU\), where U has positive pivots on its diagonal. (The converse is true, too).

Orthogonally diagonalize the matrices in Exercises 13โ€“22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17โ€“22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

13. \(\left( {\begin{aligned}{{}}3&1\\1&{\,\,3}\end{aligned}} \right)\)

Determine which of the matrices in Exercises 7โ€“12 are orthogonal. If orthogonal, find the inverse.

7. \(\left( {\begin{aligned}{{}{}}{.6}&{\,\,\,.8}\\{.8}&{ - .6}\end{aligned}} \right)\)

(M) Compute an SVD of each matrix in Exercises 26 and 27. Report the final matrix entries accurate to two decimal places. Use the method of Examples 3 and 4.

27. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{6}}&{ - {\bf{8}}}&{ - {\bf{4}}}&{\bf{5}}&{ - {\bf{4}}}\\{\bf{2}}&{\bf{7}}&{ - {\bf{5}}}&{ - {\bf{6}}}&{\bf{4}}\\{\bf{0}}&{ - {\bf{1}}}&{ - {\bf{8}}}&{\bf{2}}&{\bf{2}}\\{ - {\bf{1}}}&{ - {\bf{2}}}&{\bf{4}}&{\bf{4}}&{ - {\bf{8}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free