Chapter 7: Q6E (page 395)
Determine which of the matrices in Exercises 1–6 are symmetric.
\(\left( {\begin{array}{{}{}}1&2&2&1\\2&2&2&1\\2&2&1&2\end{array}} \right)\)
Short Answer
The given matrix is not symmetric.
Chapter 7: Q6E (page 395)
Determine which of the matrices in Exercises 1–6 are symmetric.
\(\left( {\begin{array}{{}{}}1&2&2&1\\2&2&2&1\\2&2&1&2\end{array}} \right)\)
The given matrix is not symmetric.
All the tools & learning materials you need for study success - in one app.
Get started for freeClassify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.
14. \({\bf{3}}x_{\bf{1}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}}\)
(M) Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.
38. \(\left( {\begin{aligned}{{}}{.{\bf{63}}}&{ - .{\bf{18}}}&{ - .{\bf{06}}}&{ - .{\bf{04}}}\\{ - .{\bf{18}}}&{.{\bf{84}}}&{ - .{\bf{04}}}&{.{\bf{12}}}\\{ - .{\bf{06}}}&{ - .{\bf{04}}}&{.{\bf{72}}}&{ - .{\bf{12}}}\\{ - .{\bf{04}}}&{.{\bf{12}}}&{ - .{\bf{12}}}&{.{\bf{66}}}\end{aligned}} \right)\)
Let \(A = \left( {\begin{aligned}{{}}{\,\,\,2}&{ - 1}&{ - 1}\\{ - 1}&{\,\,\,2}&{ - 1}\\{ - 1}&{ - 1} &{\,\,\,2}\end{aligned}} \right)\),\({{\rm{v}}_1} = \left( {\begin{aligned}{{}}{ - 1}\\{\,\,\,0}\\{\,\,1}\end{aligned}} \right)\) and and\({{\rm{v}}_2} = \left( {\begin{aligned}{{}}{\,\,\,1}\\{\, - 1}\\{\,\,\,\,1}\end{aligned}} \right)\). Verify that\({{\rm{v}}_1}\), \({{\rm{v}}_2}\) an eigenvector of \(A\). Then orthogonally diagonalize \(A\).
Make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form \(x_{\bf{1}}^{\bf{2}} + {\bf{10}}{x_{\bf{1}}}{x_{\bf{2}}} + x_{\bf{2}}^{\bf{2}}\) into a quadratic form with no cross-product term. Give P and the new quadratic form.
Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.
17. \(\left( {\begin{aligned}{{}}1&{ - 6}&4\\{ - 6}&2&{ - 2}\\4&{ - 2}&{ - 3}\end{aligned}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.