Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises 17-22, determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set.

18. \(\left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right),{\rm{ }}\left( {\begin{array}{*{20}{c}}0\\{ - 1}\\0\end{array}} \right)\)

Short Answer

Expert verified

The set of vectors \(\left\{ {{\bf{u}},{\bf{v}}} \right\}\) is not orthogonal because \({\bf{u}} \cdot {\bf{v}} \ne 0\).

Step by step solution

01

Definition of orthonormal sets

A set \(\left\{ {{{\mathop{\rm u}\nolimits} _1},{{\mathop{\rm u}\nolimits} _2}, \ldots ,{{\mathop{\rm u}\nolimits} _p}} \right\}\) is called anorthonormal setwhen it is an orthogonal set of unit vectors.

02

Check whether the set of vectors are orthogonal

Consider that \({\bf{u}} = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right),{\rm{ }}{\bf{v}} = \left( {\begin{array}{*{20}{c}}0\\{ - 1}\\0\end{array}} \right)\).

Check whether the set of the vector is orthogonal, as shown below:

\(\begin{array}{c}{\bf{u}} \cdot {\bf{v}} = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}0\\{ - 1}\\0\end{array}} \right)\\ = 0\left( 0 \right) + 1\left( { - 1} \right) + 0\left( 0 \right)\\ = 0 - 1 + 0\\ = - 1\\ \ne 0\end{array}\)

It is observed that \(\left\{ {{\bf{u}},{\bf{v}}} \right\}\) is not an orthogonal set because \({\bf{u}} \cdot {\bf{v}} \ne 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

20. Show that if\(A\)is an orthogonal\(m \times m\)matrix, then \(PA\) has the same singular values as \(A\).

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

15. \( - {\bf{3}}x_{\bf{1}}^{\bf{2}} - {\bf{7}}x_{\bf{2}}^{\bf{2}} - {\bf{10}}x_{\bf{3}}^{\bf{2}} - {\bf{10}}x_{\bf{4}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{3}}} + {x_{\bf{1}}}{x_{\bf{4}}} + {\bf{6}}{x_{\bf{3}}}{x_{\bf{4}}}\)

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

15. \(\left( {\begin{aligned}{{}}{\,3}&4\\4&9\end{aligned}} \right)\)

Question: In Exercises 15 and 16, construct the pseudo-inverse of \(A\). Begin by using a matrix program to produce the SVD of \(A\), or, if that is not available, begin with an orthogonal diagonalization of \({A^T}A\). Use the pseudo-inverse to solve \(A{\rm{x}} = {\rm{b}}\), for \({\rm{b}} = \left( {6, - 1, - 4,6} \right)\) and let \(\mathop {\rm{x}}\limits^\^ \)be the solution. Make a calculation to verify that \(\mathop {\rm{x}}\limits^\^ \) is in Row \(A\). Find a nonzero vector \({\rm{u}}\) in Nul\(A\), and verify that \(\left\| {\mathop {\rm{x}}\limits^\^ } \right\| < \left\| {\mathop {\rm{x}}\limits^\^ + {\rm{u}}} \right\|\), which must be true by Exercise 13(c).

15. \(A = \left[ {\begin{array}{*{20}{c}}{ - 3}&{ - 3}&{ - 6}&6&{\,\,1}\\{ - 1}&{ - 1}&{ - 1}&1&{ - 2}\\{\,\,\,0}&{\,\,0}&{ - 1}&1&{ - 1}\\{\,\,\,0}&{\,\,0}&{ - 1}&1&{ - 1}\end{array}} \right]\)

(M) Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

38. \(\left( {\begin{aligned}{{}}{.{\bf{63}}}&{ - .{\bf{18}}}&{ - .{\bf{06}}}&{ - .{\bf{04}}}\\{ - .{\bf{18}}}&{.{\bf{84}}}&{ - .{\bf{04}}}&{.{\bf{12}}}\\{ - .{\bf{06}}}&{ - .{\bf{04}}}&{.{\bf{72}}}&{ - .{\bf{12}}}\\{ - .{\bf{04}}}&{.{\bf{12}}}&{ - .{\bf{12}}}&{.{\bf{66}}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free