Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine which of the matrices in Exercises 1–6 are symmetric.

4. \(\left( {\begin{aligned}{{}}0&8&3\\8&0&{ - 4}\\3&2&0\end{aligned}} \right)\)

Short Answer

Expert verified

The given matrix is not symmetric.

Step by step solution

01

Find the transpose

A matrix\(A\) with, \(n \times n\) dimension, is symmetric if it satisfies the equation\({A^T} = A\).

It is given that\(A = \left( {\begin{aligned}{{}}0&8&3\\8&0&{ - 4}\\3&2&0\end{aligned}} \right)\). Find the transpose of\(A\), as shown below:

\(\begin{aligned}{}{A^T} = \left( {\begin{aligned}{{}}0&8&3\\8&0&2\\3&{ - 4}&0\end{aligned}} \right)\\ \ne A\end{aligned}\)

02

Draw the conclusion

As \({A^T} \ne A\), so it can be concluded that \(A\) is not asymmetric matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

17. Show that if \(A\) is square, then \(\left| {{\bf{det}}A} \right|\) is the product of the singular values of \(A\).

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

21. Justify the statement in Example 2 that the second singular value of a matrix \(A\) is the maximum of \(\left\| {A{\bf{x}}} \right\|\) as \({\bf{x}}\) varies over all unit vectors orthogonal to \({{\bf{v}}_{\bf{1}}}\), with \({{\bf{v}}_{\bf{1}}}\) a right singular vector corresponding to the first singular value of \(A\). (Hint: Use Theorem 7 in Section 7.3.)

Suppose A is invertible and orthogonally diagonalizable. Explain why \({A^{ - {\bf{1}}}}\) is also orthogonally diagonalizable.

Let A be the matrix of the quadratic form

\({\bf{9}}x_{\bf{1}}^{\bf{2}} + {\bf{7}}x_{\bf{2}}^{\bf{2}} + {\bf{11}}x_{\bf{3}}^{\bf{2}} - {\bf{8}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{8}}{x_{\bf{1}}}{x_{\bf{3}}}\)

It can be shown that the eigenvalues of A are 3,9, and 15. Find an orthogonal matrix P such that the change of variable \({\bf{x}} = P{\bf{y}}\) transforms \({{\bf{x}}^T}A{\bf{x}}\) into a quadratic form which no cross-product term. Give P and the new quadratic form.

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

13. \(\left( {\begin{aligned}{{}}3&1\\1&{\,\,3}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free