Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the points in Exercise 5 in section 8.1 which of \({{\bf{p}}_{\bf{1}}}\), \({{\bf{p}}_{\bf{2}}}\), and \({{\bf{p}}_{\bf{3}}}\) are in conv S?

Short Answer

Expert verified

None of the points are in conv S.

Step by step solution

01

Step 1:Find the projection of \({{\bf{p}}_{\bf{1}}}\), \({{\bf{p}}_{\bf{2}}}\), and \({{\bf{p}}_{\bf{3}}}\)

As S is an orthogonal set, the projection of \({{\bf{p}}_1}\) is as follows:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_1} = \frac{{{{\bf{p}}_1} \cdot {{\bf{b}}_1}}}{{{{\bf{b}}_1} \cdot {{\bf{b}}_1}}}{{\bf{b}}_1} + \frac{{{{\bf{p}}_1} \cdot {{\bf{b}}_2}}}{{{{\bf{b}}_2} \cdot {{\bf{b}}_2}}}{{\bf{b}}_2} + \frac{{{{\bf{p}}_1} \cdot {{\bf{b}}_3}}}{{{{\bf{b}}_3} \cdot {{\bf{b}}_3}}}{{\bf{b}}_3}\)

The projection of \({{\bf{p}}_{\bf{2}}}\) is as follows:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_2} = \frac{{{{\bf{p}}_2} \cdot {{\bf{b}}_1}}}{{{{\bf{b}}_1} \cdot {{\bf{b}}_1}}}{{\bf{b}}_1} + \frac{{{{\bf{p}}_2} \cdot {{\bf{b}}_2}}}{{{{\bf{b}}_2} \cdot {{\bf{b}}_2}}}{{\bf{b}}_2} + \frac{{{{\bf{p}}_2} \cdot {{\bf{b}}_3}}}{{{{\bf{b}}_3} \cdot {{\bf{b}}_3}}}{{\bf{b}}_3}\)

The projection of \({{\bf{p}}_3}\) is as follows:

\({\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_3} = \frac{{{{\bf{p}}_3} \cdot {{\bf{b}}_1}}}{{{{\bf{b}}_1} \cdot {{\bf{b}}_1}}}{{\bf{b}}_1} + \frac{{{{\bf{p}}_3} \cdot {{\bf{b}}_2}}}{{{{\bf{b}}_2} \cdot {{\bf{b}}_2}}}{{\bf{b}}_2} + \frac{{{{\bf{p}}_3} \cdot {{\bf{b}}_3}}}{{{{\bf{b}}_3} \cdot {{\bf{b}}_3}}}{{\bf{b}}_3}\)

Here \({{\bf{b}}_1}\), \({{\bf{b}}_2}\), and \({{\bf{b}}_3}\) are the element of orthogonal set S, and

\({{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\), \({{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\), and\({{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\).

02

Find the product in the projection of \({{\bf{p}}_{\bf{1}}}\)

The product for projection\({{\bf{p}}_{\bf{1}}}\)is as follows:

\(\begin{array}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}3\\8\\4\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 18\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 6\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}3\\8\\4\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = - 5\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 5\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}3\\8\\4\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{3}}} \cdot {{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\)

03

Find the product in the projection of \({{\bf{p}}_{\bf{2}}}\)

The product for projection of \({{\bf{p}}_2}\) is as follows:

\(\begin{array}{c}{{\bf{p}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}6\\{ - 3}\\3\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 12\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 6\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}6\\{ - 3}\\3\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 0\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 5\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_2} \cdot {{\bf{b}}_3} = \left[ {\begin{array}{*{20}{c}}6\\{ - 3}\\3\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{3}}} \cdot {{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\)

04

Find the product in the projection of \({{\bf{p}}_{\bf{3}}}\)

The product for projection of \({{\bf{p}}_3}\) is as follows:

\(\begin{array}{c}{{\bf{p}}_3} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}0\\{ - 1}\\{ - 5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = - 6\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{1}}} \cdot {{\bf{b}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\1\\1\end{array}} \right]\\ = 6\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_3} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}0\\{ - 1}\\{ - 5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 10\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{2}}} \cdot {{\bf{b}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\ = 5\end{array}\)

And

\(\begin{array}{c}{{\bf{p}}_3} \cdot {{\bf{b}}_3} = \left[ {\begin{array}{*{20}{c}}0\\{ - 1}\\{ - 5}\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 0\end{array}\), \(\begin{array}{c}{{\bf{b}}_{\bf{3}}} \cdot {{\bf{b}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}2\\{ - 5}\\1\end{array}} \right]\\ = 30\end{array}\)

05

Substitute values in the equation of projections

The projection \({{\bf{p}}_1}\)is as follows:

\(\begin{array}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_1} = \frac{{18}}{6}{{\bf{b}}_1} + \frac{{\left( { - 5} \right)}}{5}{{\bf{b}}_2} + \frac{{\left( { - 30} \right)}}{{30}}{{\bf{b}}_3}\\ = 3{{\bf{b}}_1} - {{\bf{b}}_2} - {{\bf{b}}_3}\end{array}\)

The projection \({{\bf{p}}_2}\) is as follows:

\(\begin{array}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_2} = \left( {\frac{{12}}{6}} \right){{\bf{b}}_1} + \left( {\frac{0}{5}} \right){{\bf{b}}_2} + \left( {\frac{{30}}{{30}}} \right){{\bf{b}}_3}\\ = 2{{\bf{b}}_1} + 0{{\bf{b}}_2} + {{\bf{b}}_3}\end{array}\)

The projection \({{\bf{p}}_3}\) is as follows:

\(\begin{array}{c}{\rm{pro}}{{\rm{j}}_w}{{\bf{p}}_3} = \left( { - \frac{6}{6}} \right){{\bf{b}}_1} + \left( {\frac{{10}}{5}} \right){{\bf{b}}_2} + \left( {\frac{0}{{30}}} \right){{\bf{b}}_3}\\ = - {{\bf{b}}_1} + 2{{\bf{b}}_2} + 0{{\bf{b}}_3}\end{array}\)

Following projections can be made from the projections:

  1. For \({{\bf{p}}_1}\), all coefficients are not positive, so \({{\bf{p}}_1} \notin {\rm{conv}}\,S\).
  2. For \({{\bf{p}}_2}\), all coefficients are positive but \(\left( {2 + 0 + 1 = 3 \ne 1} \right)\), so \({{\bf{p}}_1} \notin {\rm{conv}}\,S\).
  3. For \({{\bf{p}}_3}\), all coefficients are not positive, so \({{\bf{p}}_1} \notin {\rm{conv}}\,S\).

Therefore, none of the points are in conv S.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose A is invertible and orthogonally diagonalizable. Explain why \({A^{ - {\bf{1}}}}\) is also orthogonally diagonalizable.

Determine which of the matrices in Exercises 1โ€“6 are symmetric.

4. \(\left( {\begin{aligned}{{}}0&8&3\\8&0&{ - 4}\\3&2&0\end{aligned}} \right)\)

Let \(A = \left( {\begin{aligned}{{}}{\,\,\,2}&{ - 1}&{ - 1}\\{ - 1}&{\,\,\,2}&{ - 1}\\{ - 1}&{ - 1} &{\,\,\,2}\end{aligned}} \right)\),\({{\rm{v}}_1} = \left( {\begin{aligned}{{}}{ - 1}\\{\,\,\,0}\\{\,\,1}\end{aligned}} \right)\) and and\({{\rm{v}}_2} = \left( {\begin{aligned}{{}}{\,\,\,1}\\{\, - 1}\\{\,\,\,\,1}\end{aligned}} \right)\). Verify that\({{\rm{v}}_1}\), \({{\rm{v}}_2}\) an eigenvector of \(A\). Then orthogonally diagonalize \(A\).

In Exercises 17โ€“24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) โ€œdiagonalโ€ matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

17. Show that if \(A\) is square, then \(\left| {{\bf{det}}A} \right|\) is the product of the singular values of \(A\).

Question: 13. The sample covariance matrix is a generalization of a formula for the variance of a sample of \(N\) scalar measurements, say \({t_1},................,{t_N}\). If \(m\) is the average of \({t_1},................,{t_N}\), then the sample variance is given by

\(\frac{1}{{N - 1}}\sum\limits_{k = 1}^n {{{\left( {{t_k} - m} \right)}^2}} \)

Show how the sample covariance matrix, \(S\), defined prior to Example 3, may be written in a form similar to (1). (Hint: Use partitioned matrix multiplication to write \(S\) as \(\frac{1}{{N - 1}}\) times the sum of \(N\) matrices of size \(p \times p\). For \(1 \le k \le N\), write \({X_k} - M\) in place of \({\hat X_k}\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free