Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a spectral decomposition of A from Example 3.

Short Answer

Expert verified

The spectral decomposition of matrixA is \(7\left[ {\begin{aligned}{{}}{\frac{1}{2}}&0&{\frac{1}{2}}\\0&0&0\\{\frac{1}{2}}&0&{\frac{1}{2}}\end{aligned}} \right] + 7\left[ {\begin{aligned}{{}}{\frac{1}{{18}}}&{ - \frac{4}{{18}}}&{ - \frac{1}{{18}}}\\{ - \frac{4}{{18}}}&{\frac{{16}}{{18}}}&{\frac{4}{{18}}}\\{ - \frac{1}{{18}}}&{\frac{4}{{18}}}&{\frac{1}{{18}}}\end{aligned}} \right] - 2\left[ {\begin{aligned}{{}}{\frac{4}{9}}&{\frac{2}{9}}&{ - \frac{4}{9}}\\{\frac{2}{9}}&{\frac{1}{9}}&{ - \frac{2}{9}}\\{ - \frac{4}{9}}&{ - \frac{2}{9}}&{\frac{4}{9}}\end{aligned}} \right]\).

Step by step solution

01

Write given values from example 3

The eigenvalues of the matrix \(A = \left[ {\begin{aligned}{{}}3&{ - 2}&4\\{ - 2}&6&2\\4&2&3\end{aligned}} \right]\)are 7, 7, and \( - 2\). The matrix P is defined as:

\(\begin{aligned}{}P &= \left[ {\begin{aligned}{{}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}&{{{\bf{u}}_3}}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}}{\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt {18} }}}&{ - \frac{2}{3}}\\0&{\frac{4}{{\sqrt {18} }}}&{ - \frac{1}{3}}\\{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt {18} }}}&{\frac{2}{3}}\end{aligned}} \right]\end{aligned}\)

02

Find the spectral decomposition of A

The spectral decomposition of A can be calculated as:

\(\begin{aligned}{}A &= {\lambda _1}{{\bf{u}}_1}{\bf{u}}_1^T + {\lambda _2}{{\bf{u}}_2}{\bf{u}}_2^T + {\lambda _3}{{\bf{u}}_3}{\bf{u}}_3^T\\ &= 8{{\bf{u}}_1}{\bf{u}}_1^T + 6{{\bf{u}}_2}{\bf{u}}_2^T + 6{{\bf{u}}_3}{\bf{u}}_3^T\\ &= 7\left[ {\begin{aligned}{{}}{ - \frac{1}{{\sqrt 2 }}}\\0\\{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right]\left[ {\begin{aligned}{{}}{\frac{1}{{\sqrt 2 }}}&0&{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right] + 6\left[ {\begin{aligned}{{}}{ - \frac{1}{{\sqrt {18} }}}\\{\frac{4}{{\sqrt {18} }}}\\{\frac{1}{{\sqrt {18} }}}\end{aligned}} \right]\left[ {\begin{aligned}{{}}{ - \frac{1}{{\sqrt {18} }}}&{\frac{4}{{\sqrt {18} }}}&{\frac{1}{{\sqrt {18} }}}\end{aligned}} \right] - 2\left[ {\begin{aligned}{{}}{ - \frac{2}{3}}\\{ - \frac{1}{3}}\\{\frac{2}{3}}\end{aligned}} \right]\left[ {\begin{aligned}{{}}{ - \frac{2}{3}}&{ - \frac{1}{3}}&{\frac{2}{3}}\end{aligned}} \right]\\ &= 7\left[ {\begin{aligned}{{}}{\frac{1}{2}}&0&{\frac{1}{2}}\\0&0&0\\{\frac{1}{2}}&0&{\frac{1}{2}}\end{aligned}} \right] + 7\left[ {\begin{aligned}{{}}{\frac{1}{{18}}}&{ - \frac{4}{{18}}}&{ - \frac{1}{{18}}}\\{ - \frac{4}{{18}}}&{\frac{{16}}{{18}}}&{\frac{4}{{18}}}\\{ - \frac{1}{{18}}}&{\frac{4}{{18}}}&{\frac{1}{{18}}}\end{aligned}} \right] - 2\left[ {\begin{aligned}{{}}{\frac{4}{9}}&{\frac{2}{9}}&{ - \frac{4}{9}}\\{\frac{2}{9}}&{\frac{1}{9}}&{ - \frac{2}{9}}\\{ - \frac{4}{9}}&{ - \frac{2}{9}}&{\frac{4}{9}}\end{aligned}} \right]\end{aligned}\)

Thus, the spectral matrix of A is \(7\left[ {\begin{aligned}{{}}{\frac{1}{2}}&0&{\frac{1}{2}}\\0&0&0\\{\frac{1}{2}}&0&{\frac{1}{2}}\end{aligned}} \right] + 7\left[ {\begin{aligned}{{}}{\frac{1}{{18}}}&{ - \frac{4}{{18}}}&{ - \frac{1}{{18}}}\\{ - \frac{4}{{18}}}&{\frac{{16}}{{18}}}&{\frac{4}{{18}}}\\{ - \frac{1}{{18}}}&{\frac{4}{{18}}}&{\frac{1}{{18}}}\end{aligned}} \right] - 2\left[ {\begin{aligned}{{}}{\frac{4}{9}}&{\frac{2}{9}}&{ - \frac{4}{9}}\\{\frac{2}{9}}&{\frac{1}{9}}&{ - \frac{2}{9}}\\{ - \frac{4}{9}}&{ - \frac{2}{9}}&{\frac{4}{9}}\end{aligned}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

39. \(\left( {\begin{aligned}{{}}{.{\bf{31}}}&{.{\bf{58}}}&{.{\bf{08}}}&{.{\bf{44}}}\\{.{\bf{58}}}&{ - .{\bf{56}}}&{.{\bf{44}}}&{ - .{\bf{58}}}\\{.{\bf{08}}}&{.{\bf{44}}}&{.{\bf{19}}}&{ - .{\bf{08}}}\\{ - .{\bf{44}}}&{ - .{\bf{58}}}&{ - .{\bf{08}}}&{.{\bf{31}}}\end{aligned}} \right)\)

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

21. \(\left( {\begin{aligned}{{}}4&3&1&1\\3&4&1&1\\1&1&4&3\\1&1&3&4\end{aligned}} \right)\)

Determine which of the matrices in Exercises 1–6 are symmetric.

1. \(\left[ {\begin{aligned}{{}}3&{\,\,\,5}\\5&{ - 7}\end{aligned}} \right]\)

Question: 14. Exercises 12–14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

Given any \({\rm{b}}\) in \({\mathbb{R}^m}\), adapt Exercise 13 to show that \({A^ + }{\rm{b}}\) is the least-squares solution of minimum length. [Hint: Consider the equation \(A{\rm{x}} = {\rm{b}}\), where \(\mathop {\rm{b}}\limits^\^ \) is the orthogonal projection of \({\rm{b}}\) onto Col \(A\).

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

13. \({\bf{ - }}x_{\bf{1}}^{\bf{2}}{\bf{ - 6}}{x_{\bf{1}}}{x_{\bf{2}}} + {\bf{9}}x_{\bf{2}}^{\bf{2}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free