Chapter 7: Q33E (page 395)
Construct a spectral decomposition of A from Example 2.
Short Answer
The spectral decomposition of A is \(\left[ {\begin{aligned}{{}{}}6&{ - 2}&{ - 1}\\{ - 2}&6&{ - 1}\\{ - 1}&{ - 1}&5\end{aligned}} \right]\).
Chapter 7: Q33E (page 395)
Construct a spectral decomposition of A from Example 2.
The spectral decomposition of A is \(\left[ {\begin{aligned}{{}{}}6&{ - 2}&{ - 1}\\{ - 2}&6&{ - 1}\\{ - 1}&{ - 1}&5\end{aligned}} \right]\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose\(A = PR{P^{ - {\bf{1}}}}\), where P is orthogonal and R is upper triangular. Show that if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.
Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.
14. \(\left( {\begin{aligned}{{}}{\,1}&{ - 5}\\{ - 5}&{\,\,1}\end{aligned}} \right)\)
Compute the quadratic form \({x^T}Ax\), when \(A = \left( {\begin{aligned}{{}}3&2&0\\2&2&1\\0&1&0\end{aligned}} \right)\) and
a. \(x = \left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right)\)
b. \(x = \left( {\begin{aligned}{{}}{ - 2}\\{ - 1}\\5\end{aligned}} \right)\)
c. \(x = \left( {\begin{aligned}{{}}{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\end{aligned}} \right)\)
Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.
14. \({\bf{3}}x_{\bf{1}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}}\)
Determine which of the matrices in Exercises 1–6 are symmetric.
1. \(\left[ {\begin{aligned}{{}}3&{\,\,\,5}\\5&{ - 7}\end{aligned}} \right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.