Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a spectral decomposition of A from Example 2.

Short Answer

Expert verified

The spectral decomposition of A is \(\left[ {\begin{aligned}{{}{}}6&{ - 2}&{ - 1}\\{ - 2}&6&{ - 1}\\{ - 1}&{ - 1}&5\end{aligned}} \right]\).

Step by step solution

01

Write given values from example 2

The eigenvalues of the matrix \(A = \left[ {\begin{aligned}{{}{}}6&{ - 2}&{ - 1}\\{ - 2}&6&{ - 1}\\{ - 1}&{ - 1}&5\end{aligned}} \right]\) are 8, 6, and 3. The matrix P is defined as:

\(\begin{aligned}{}P &= \left[ {\begin{aligned}{{}{}}{{{\bf{u}}_1}}&{{{\bf{u}}_2}}&{{{\bf{u}}_3}}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}{ - \frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 6 }}}&{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 6 }}}&{\frac{1}{{\sqrt 3 }}}\\0&{\frac{2}{{\sqrt 6 }}}&{\frac{1}{{\sqrt 3 }}}\end{aligned}} \right]\end{aligned}\)

02

Find the spectral decomposition of A

The spectral decomposition of A can be calculated as:

\(\begin{aligned}{}A &= {\lambda _1}{{\bf{u}}_1}{\bf{u}}_1^T + {\lambda _2}{{\bf{u}}_2}{\bf{u}}_2^T + {\lambda _3}{{\bf{u}}_3}{\bf{u}}_3^T\\ &= 8{{\bf{u}}_1}{\bf{u}}_1^T + 6{{\bf{u}}_2}{\bf{u}}_2^T + 6{{\bf{u}}_3}{\bf{u}}_3^T\\ &= 8\left[ {\begin{aligned}{{}{}}{ - \frac{1}{{\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\\0\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}{ - \frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}&0\end{aligned}} \right] + 6\left[ {\begin{aligned}{{}{}}{ - \frac{1}{{\sqrt 6 }}}\\{ - \frac{1}{{\sqrt 6 }}}\\{\frac{2}{{\sqrt 6 }}}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}{ - \frac{1}{{\sqrt 6 }}}&{ - \frac{1}{{\sqrt 6 }}}&{\frac{2}{{\sqrt 6 }}}\end{aligned}} \right] + 3\left[ {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}\\{\frac{1}{{\sqrt 3 }}}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}&{\frac{1}{{\sqrt 3 }}}\end{aligned}} \right]\end{aligned}\)

Solve further,

\(\begin{aligned}{}A &= 8\left[ {\begin{aligned}{{}{}}{\frac{1}{2}}&{ - \frac{1}{2}}&0\\{ - \frac{1}{2}}&{\frac{1}{2}}&0\\0&0&0\end{aligned}} \right] + 6\left[ {\begin{aligned}{{}{}}{\frac{1}{6}}&{\frac{1}{6}}&{ - \frac{2}{6}}\\{\frac{1}{6}}&{\frac{1}{6}}&{ - \frac{2}{6}}\\{ - \frac{2}{6}}&{ - \frac{2}{6}}&{\frac{4}{6}}\end{aligned}} \right] + 3\left[ {\begin{aligned}{{}{}}{\frac{1}{3}}&{\frac{1}{3}}&{\frac{1}{3}}\\{\frac{1}{3}}&{\frac{1}{3}}&{\frac{1}{3}}\\{\frac{1}{3}}&{\frac{1}{3}}&{\frac{1}{3}}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}4&{ - 4}&0\\{ - 4}&4&0\\0&0&0\end{aligned}} \right] + \left[ {\begin{aligned}{{}{}}1&1&{ - 2}\\1&1&{ - 2}\\{ - 2}&{ - 2}&4\end{aligned}} \right] + \left[ {\begin{aligned}{{}{}}1&1&1\\1&1&1\\1&1&1\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}6&{ - 2}&{ - 1}\\{ - 2}&6&{ - 1}\\{ - 1}&{ - 1}&5\end{aligned}} \right]\end{aligned}\)

Thus, the spectral matrix of A is \(\left[ {\begin{aligned}{{}{}}6&{ - 2}&{ - 1}\\{ - 2}&6&{ - 1}\\{ - 1}&{ - 1}&5\end{aligned}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free