Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose\(A = PR{P^{ - {\bf{1}}}}\), where P is orthogonal and R is upper triangular. Show that if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.

Short Answer

Expert verified

Matrix R has to be a diagonal matrix.

Step by step solution

01

Simplify the equation \(A = PR{P^{ - {\bf{1}}}}\)

Multiply P on both sides of the equation \(A = PR{P^{ - 1}}\).

\(\begin{aligned}{}AP &= PR{P^{ - 1}}P\\AP &= PR\\{P^{ - 1}}AP &= {P^{ - 1}}PR\\{P^{ - 1}}AP &= R\\{P^T}AP &= R\end{aligned}\)

02

Take transpose on both sides of the equation \({P^T}AP = R\)

Take transpose on both sides of the equation \({P^T}AP = R\).

\(\begin{aligned}{}{\left( {{P^T}AP} \right)^T} &= {R^T}\\{P^T}{A^T}{\left( {{P^T}} \right)^T} &= {R^T}\\{P^T}{A^T}P &= {R^T}\\{P^T}AP &= {R^T}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{A^T} = A} \right)\\R &= {R^T}\end{aligned}\)

The above equation shows that R is symmetric and upper triangular.

Thus, R has to be a diagonal matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 14. Exercises 12–14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

Given any \({\rm{b}}\) in \({\mathbb{R}^m}\), adapt Exercise 13 to show that \({A^ + }{\rm{b}}\) is the least-squares solution of minimum length. [Hint: Consider the equation \(A{\rm{x}} = {\rm{b}}\), where \(\mathop {\rm{b}}\limits^\^ \) is the orthogonal projection of \({\rm{b}}\) onto Col \(A\).

10.Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

10. \(\left( {\begin{aligned}{{}}{1/3}&{\,\,2/3}&{\,\,2/3}\\{2/3}&{\,\,1/3}&{ - 2/3}\\{2/3}&{ - 2/3}&{\,\,1/3}\end{aligned}} \right)\)

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) ,

\(\)

where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

18. Suppose \(A\) is square and invertible. Find a singular value decomposition of \({A^{ - 1}}\)

Question: Let \({x_1}\,,{x_2}\) denote the variables for the two-dimensional data in Exercise 1. Find a new variable \({y_1}\) of the form \({y_1} = {c_1}{x_1} + {c_2}{x_2}\), with\(c_1^2 + c_2^2 = 1\), such that \({y_1}\) has maximum possible variance over the given data. How much of the variance in the data is explained by \({y_1}\)?

Construct a spectral decomposition of A from Example 2.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free