Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(B\) is \(m \times n\), then \({B^T}B\) is positive semidefinite; and if \(B\) is \(n \times n\) and invertible, then \({B^T}B\) is positive definite.

Short Answer

Expert verified

It is proved that if \(B\) is \(m \times n\), then \({B^T}B\) is positive semidefinite; and if \(B\) is \(n \times n\) and invertible, then \({B^T}B\) is positive definite.

Step by step solution

01

Step 1: Find the characteristic polynomial

We need to prove that\({B^T}B\)is a symmetric matrix and the quadratic form\({{\bf{x}}^T}\left( {{B^T}B} \right){\bf{x}} \ge 0\)for all\({\bf{x}}\)that proves\({B^T}P\)positive semi-definite.

Now consider,

\(\begin{aligned}{}{\left( {{B^T}B} \right)^T} &= {B^T}{\left( {{B^T}} \right)^T}\\ &= {B^T}B\end{aligned}\)

Thus, the matrix \({B^T}B\) is a symmetric matrix.

02

Show that \({B^T}B\) is positive semi definite

Consider the quadratic form \({{\bf{x}}^T}\left( {{B^T}B} \right){\bf{x}}\).

\(\begin{aligned}{}{{\bf{x}}^T}\left( {{B^T}B} \right){\bf{x}} &= \left( {{{\bf{x}}^T}{B^T}} \right)B{\bf{x}}\\ &= {\left( {B{\bf{x}}} \right)^T}B{\bf{x}}\\ &= {\left\| {B{\bf{x}}} \right\|^2}\end{aligned}\)

Thus, \({{\bf{x}}^T}\left( {{B^T}B} \right){\bf{x}} \ge 0\).

Therefore, the matrix \({B^T}B\) is positive semi-definite.

03

Show that \({B^T}B\) is positive definite

Assume \({{\bf{x}}^T}\left( {{B^T}B} \right){\bf{x}} = 0\)then we have,

\(\begin{aligned}{}{{\bf{x}}^T}\left( {{B^T}B} \right){\bf{x}} &= 0\\\left( {{{\bf{x}}^T}{B^T}} \right)B{\bf{x}} &= 0\\{\left( {B{\bf{x}}} \right)^T}B{\bf{x}} &= 0\\{\left\| {B{\bf{x}}} \right\|^2} &= 0\end{aligned}\)

It is given that the matrix\(B\)is invertible, hence the equation\(B{\bf{x}} = 0\)has a trivial solution only. Therefore, we have,\({{\bf{x}}^T}\left( {{B^T}B} \right){\bf{x}} = 0\)then\({\bf{x}} = 0\)and\({\bf{x}} \ne 0\),\({{\bf{x}}^T}\left( {{B^T}B} \right){\bf{x}} > 0\).

Thus,\({B^T}B\)is a positive definite.

It is proved that if \(B\) is \(m \times n\), then \({B^T}B\)is positive semidefinite; and if\(B\) is \(n \times n\) and invertible, then \({B^T}B\)is positive definite.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose\(A = PR{P^{ - {\bf{1}}}}\), where P is orthogonal and R is upper triangular. Show that if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

22. \(\left( {\begin{aligned}{{}}4&0&1&0\\0&4&0&1\\1&0&4&0\\0&1&0&4\end{aligned}} \right)\)

Question: In Exercises 1 and 2, convert the matrix of observations to mean deviation form, and construct the sample covariance matrix.

\(1.\,\,\left( {\begin{array}{*{20}{c}}{19}&{22}&6&3&2&{20}\\{12}&6&9&{15}&{13}&5\end{array}} \right)\)

Question: 3. Let A be an \(n \times n\) symmetric matrix of rank r. Explain why the spectral decomposition of A represents A as the sum of r rank 1 matrices.

Question: Repeat Exercise 15 for the following SVD of a \({\bf{3 \times 4}}\) matrix \(A\):

\(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{.86}}}&{ - {\bf{.11}}}&{ - {\bf{.50}}}\\{{\bf{.31}}}&{{\bf{.68}}}&{ - {\bf{.67}}}\\{{\bf{.41}}}&{ - {\bf{.73}}}&{ - {\bf{5}}{\bf{.5}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{\bf{12}}{\bf{.48}}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{{\bf{6}}{\bf{.34}}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right){\bf{ \times }}\left( {\begin{array}{*{20}{c}}{{\bf{.66}}}&{ - {\bf{.03}}}&{ - {\bf{.35}}}&{{\bf{.66}}}\\{ - {\bf{1}}{\bf{.3}}}&{ - {\bf{.90}}}&{ - {\bf{.39}}}&{ - {\bf{.13}}}\\{{\bf{.65}}}&{{\bf{.08}}}&{ - {\bf{.16}}}&{ - {\bf{.73}}}\\{ - {\bf{.34}}}&{{\bf{.42}}}&{ - {\bf{8}}{\bf{.4}}}&{ - {\bf{0}}{\bf{.8}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free