Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

15. \(\left( {\begin{aligned}{{}}{\,3}&4\\4&9\end{aligned}} \right)\)

Short Answer

Expert verified

The orthogonal diagonalization is \(A = \left( {\begin{aligned}{{}}{1/\sqrt 5 }&{ - 2/\sqrt 5 }\\{2/\sqrt 5 }&{\,\,\,\,1/\sqrt 5 }\end{aligned}} \right)\left( {\begin{aligned}{{}}{11}&{\,\,0}\\0&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{1/\sqrt 5 }&{ - 2/\sqrt 5 }\\{2/\sqrt 5 }&{\,\,\,\,1/\sqrt 5 }\end{aligned}} \right)\).

Step by step solution

01

Find the characteristic polynomial

If is an \(n \times n\)matrix, then \(det\left( {A - \lambda I} \right)\), iscalled the characteristic polynomial of matrix \(A\).

Let\(A = \left( {\begin{aligned}{{}}{\,3}&4\\4&9\end{aligned}} \right)\)and\(I = \left( {\begin{aligned}{{}}1&0\\0&1\end{aligned}} \right)\)is identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\(\begin{aligned}{}A - \lambda I &= \left( {\begin{aligned}{{}}{\,3}&4\\4&9\end{aligned}} \right) - \lambda \left( {\begin{aligned}{{}}1&0\\0&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{3 - \lambda }&4\\4&{9 - \lambda }\end{aligned}} \right)\end{aligned}\)

Now calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\(\begin{aligned}{}det\left( {A - \lambda I} \right) &= det\left( {\begin{aligned}{{}}{3 - \lambda }&4\\4&{9 - \lambda }\end{aligned}} \right)\\ &= \left( {3 - \lambda } \right)\left( {9 - \lambda } \right) + 11\\ &= {\lambda ^2} - 12\lambda + 11\end{aligned}\)

So, the characteristic polynomial of matrix \(A\) is \({\lambda ^2} - 12\lambda + 11\).

02

Find the Eigen values

Thus, the eigenvalues of\(A\)are the solutions of the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\). So, solve the characteristic equation\({\lambda ^2} - 12\lambda + 11 = 0\), as follows:

For the quadratic equation, \(a{x^2} + bx + c = 0\) , the general solution is given as\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} \;\;}}{{2a}}\).

Thus, the solution of the characteristic equation\({\lambda ^2} - 12\lambda + 11 = 0\)is obtained as follows:

\(\begin{aligned}{}{\lambda ^2} - 12\lambda + 11 &= 0\\\lambda &= \frac{{ - \left( { - 12} \right) \pm \sqrt {{{\left( { - 12} \right)}^2} - 4\left( {11} \right)} }}{2}\\ &= \frac{{12 \pm \sqrt {100} }}{2}\\ &= 11,\,\,1\end{aligned}\)

The eigenvalues of \(A\)are \(\lambda = 11\) and \(\lambda = 1\) .

03

Find the matrix \(P\) and \(D\)

A matrix \(A\) is diagonalized as \(A = PD{P^{ - 1}}\), where \(P\) is orthogonal matrix of normalized Eigen vectors of matrix \(A\)and \(D\) is a diagonal matrix having Eigen values of matrix \(A\) on its principle diagonal.

For the Eigen value\(\lambda = 11\), the basis for Eigenspace is obtained by solving the system of equations\(\left( {A - 11I} \right){\bf{x}} = 0\). On solving it is obtained as\(\left( \begin{aligned}{}1\\2\end{aligned} \right)\).

Similarly, for the Eigen value\(\lambda = 1\), the basis for Eigenspace is obtained by solving the system of equations\(\left( {A - I} \right){\bf{x}} = 0\). On solving it is obtained as\(\left( \begin{aligned}{} - 2\\\,\,\,1\end{aligned} \right)\).

The normalized vectors are\({{\bf{u}}_1} = \left( \begin{aligned}{}1/\sqrt 5 \\\,2/\sqrt 5 \end{aligned} \right)\)and\({{\bf{u}}_2} = \left( \begin{aligned}{} - 2/\sqrt 5 \\\,\,\,1/\sqrt 5 \end{aligned} \right)\). So, the normalized matrix\(P\)is given as;

\(\begin{aligned}{}P &= \left( {{{\bf{u}}_1}\,\,{{\bf{u}}_2}} \right)\\ &= \left( {\begin{aligned}{{}}{1/\sqrt 5 }&{ - 2/\sqrt 5 }\\{2/\sqrt 5 }&{\,\,\,\,1/\sqrt 5 }\end{aligned}} \right)\end{aligned}\)

whereas the matrix \(D\) is obtained as \(D = \left( {\begin{aligned}{{}}{11}&0\\0&1\end{aligned}} \right)\).

04

Diagonalize matrix \(A\)

The matrix\(A\)is diagonalized as\(A = PD{P^{ - 1}}\). Thus, the orthogonal diagonalization is as follows:

\(\begin{aligned}{}A &= PD{P^{ - 1}}\\ &= \left( {\begin{aligned}{{}}{1/\sqrt 5 }&{ - 2/\sqrt 5 }\\{2/\sqrt 5 }&{\,\,\,\,1/\sqrt 5 }\end{aligned}} \right)\left( {\begin{aligned}{{}}{11}&{\,\,0}\\0&1\end{aligned}} \right){\left( {\begin{aligned}{{}}{1/\sqrt 5 }&{ - 2/\sqrt 5 }\\{2/\sqrt 5 }&{\,\,\,\,1/\sqrt 5 }\end{aligned}} \right)^{ - 1}}\end{aligned}\)

The orthogonal diagonalization is \(A = \left( {\begin{aligned}{{}}{1/\sqrt 5 }&{ - 2/\sqrt 5 }\\{2/\sqrt 5 }&{\,\,\,\,1/\sqrt 5 }\end{aligned}} \right)\left( {\begin{aligned}{{}}{11}&{\,\,0}\\0&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{1/\sqrt 5 }&{ - 2/\sqrt 5 }\\{2/\sqrt 5 }&{\,\,\,\,1/\sqrt 5 }\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

12.\({\bf{ - }}x_{\bf{1}}^{\bf{2}}{\bf{ - 2}}{x_{\bf{1}}}{x_{\bf{2}}} - x_{\bf{2}}^{\bf{2}}\)

Question 11: Prove that any \(n \times n\) matrix A admits a polar decomposition of the form \(A = PQ\), where P is a \(n \times n\) positive semidefinite matrix with the same rank as A and where Q is an \(n \times n\) orthogonal matrix. (Hint: Use a singular value decomposition, \(A = U\sum {V^T}\), and observe that \(A = \left( {U\sum {U^T}} \right)\left( {U{V^T}} \right)\).) This decomposition is used, for instance, in mechanical engineering to model the deformation of a material. The matrix P describe the stretching or compression of the material (in the directions of the eigenvectors of P), and Q describes the rotation of the material in space.

Compute the quadratic form \({{\bf{x}}^T}A{\bf{x}}\), when \(A = \left( {\begin{aligned}{{}}5&{\frac{1}{3}}\\{\frac{1}{3}}&1\end{aligned}} \right)\) and

a. \({\bf{x}} = \left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\)

b. \({\bf{x}} = \left( {\begin{aligned}{{}}6\\1\end{aligned}} \right)\)

c. \({\bf{x}} = \left( {\begin{aligned}{{}}1\\3\end{aligned}} \right)\)

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

19. \(\left( {\begin{aligned}{{}}3&{ - 2}&4\\{ - 2}&6&2\\4&2&3\end{aligned}} \right)\)

Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

7. \(\left( {\begin{aligned}{{}{}}{.6}&{\,\,\,.8}\\{.8}&{ - .6}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free