Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

14. \({\bf{3}}x_{\bf{1}}^{\bf{2}} + {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}}\)

Short Answer

Expert verified

The new quadratic form is \(Q\left( {\rm{y}} \right) = - y_1^2 + 4y_2^2\).

Step by step solution

01

Step 1: Find the coefficient matrix of the quadratic form

Consider \(3x_1^2 + 4{x_1}{x_2}\).

As the quadratic form is:

\({{\rm{x}}^T}A{\rm{x}} = \left( {\begin{aligned}{{}}{{x_1}}&{{x_2}}\end{aligned}} \right)\left( {\begin{aligned}{{}}3&2\\2&0\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\)

Therefore, thecoefficient matrix of the quadratic form is\(A = \left( {\begin{aligned}{{}}3&2\\2&0\end{aligned}} \right)\).

Now find the characteristic polynomial.

\(\begin{aligned}{}\left| {\begin{aligned}{{}}{3 - \lambda }&2\\2&{ - \lambda }\end{aligned}} \right| &= 0\\\left( {3 - \lambda } \right)\left( { - \lambda } \right) - 4 &= 0\\{\lambda ^2} - 3\lambda - 4 &= 0\\\lambda & = - 1,4\end{aligned}\)

02

Find the basis for eigen value \({\bf{ - 1}}\)

\(\begin{aligned}{}\left( {A - I} \right){\bf{x}} &= 0\\\left( {\begin{aligned}{{}}4&2\\2&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) &= \left( {\begin{aligned}{{}}0\\0\end{aligned}} \right)\\4{x_1} + 2{x_2} &= 0\\2{x_1} + {x_2} &= 0\end{aligned}\)

Thus, the eigenvector is \({{\rm{v}}_1} = \left( {\begin{aligned}{{}}{ - 1}\\2\end{aligned}} \right)\).

03

Find the basis for eigen value \({\bf{4}}\)

\(\begin{aligned}{}\left( {A - 0 \cdot I} \right){\bf{x}} &= 0\\\left( {\begin{aligned}{{}}{ - 1}&2\\2&{ - 4}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) &= \left( {\begin{aligned}{{}}0\\0\end{aligned}} \right)\\ - {x_1} + 2{x_2} &= 0\\2{x_1} - 4{x_2} &= 0\end{aligned}\)

Thus, the eigenvector is \({{\rm{v}}_2} = \left( {\begin{aligned}{{}}2\\1\end{aligned}} \right)\).

04

Find the matrix \(P\) and \(D\)

Write the normalization of the vectors.

\(\begin{aligned}{}{{\bf{u}}_1} &= \frac{1}{{\sqrt {1 + 4} }}\left( {\begin{aligned}{{}}{ - 1}\\2\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}}{ - \frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{aligned}} \right)\end{aligned}\)

and

\(\begin{aligned}{}{{\bf{u}}_2} & = \frac{1}{{\sqrt {1 + 4} }}\left( {\begin{aligned}{{}}2\\1\end{aligned}} \right)\\ & = \left( \begin{aligned}{l}\frac{2}{{\sqrt 5 }}\\\frac{1}{{\sqrt 5 }}\end{aligned} \right)\end{aligned}\)

Then the matrix\(P\)and\(D\)is shown below:

\(P = \left( {\begin{aligned}{{}}{ - \frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{aligned}} \right)\)and\(D = \left( {\begin{aligned}{{}}{ - 1}&0\\0&4\end{aligned}} \right)\)

Now write the new quadratic form by using the transformation\({\rm{x}} = P{\rm{y}}\).

\(\begin{aligned}{}Q\left( {\rm{x}} \right) & = {{\rm{x}}^T}A{\rm{x}}\\ & = {\left( {P{\rm{y}}} \right)^T}A\left( {P{\rm{y}}} \right)\\ & = {{\rm{y}}^T}{P^T}AP{\rm{y}}\\ & = {{\rm{y}}^T}D{\rm{y}}\\ & = 10y_1^2\end{aligned}\)

Therefore,

\(\begin{aligned}{}{{\rm{y}}^T}D{\rm{y}} & = \left( {\begin{aligned}{{}}{{y_1}}&{{y_2}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{ - 1}&0\\0&4\end{aligned}} \right)\left( {\begin{aligned}{{}}{{y_1}}\\{{y_2}}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}}{ - {y_1}}&{4{y_2}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{y_1}}\\{{y_2}}\end{aligned}} \right)\\ & = - y_1^2 + 4y_2^2\end{aligned}\)

Thus, the new quadratic form is \(Q\left( {\rm{y}} \right) = - y_1^2 + 4y_2^2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

8. \(\left( {\begin{aligned}{{}}1&{\,\,\,1}\\1&{ - 1}\end{aligned}} \right)\)

Question: In Exercises 15 and 16, construct the pseudo-inverse of \(A\). Begin by using a matrix program to produce the SVD of \(A\), or, if that is not available, begin with an orthogonal diagonalization of \({A^T}A\). Use the pseudo-inverse to solve \(A{\rm{x}} = {\rm{b}}\), for \({\rm{b}} = \left( {6, - 1, - 4,6} \right)\) and let \(\mathop {\rm{x}}\limits^\^ \)be the solution. Make a calculation to verify that \(\mathop {\rm{x}}\limits^\^ \) is in Row \(A\). Find a nonzero vector \({\rm{u}}\) in Nul\(A\), and verify that \(\left\| {\mathop {\rm{x}}\limits^\^ } \right\| < \left\| {\mathop {\rm{x}}\limits^\^ + {\rm{u}}} \right\|\), which must be true by Exercise 13(c).

16. \(A = \left( {\begin{array}{*{20}{c}}4&0&{ - 1}&{ - 2}&0\\{ - 5}&0&3&5&0\\{\,\,\,2}&{\,\,0}&{ - 1}&{ - 2}&0\\{\,\,\,6}&{\,\,0}&{ - 3}&{ - 6}&0\end{array}} \right)\)

Question:Find the principal components of the data for Exercise 1.

In Exercises 25 and 26, mark each statement True or False. Justify each answer.

a. An\(n \times n\)matrix that is orthogonally diagonalizable must be symmetric.

b. If\({A^T} = A\)and if vectors\({\rm{u}}\)and\({\rm{v}}\)satisfy\(A{\rm{u}} = {\rm{3u}}\)and\(A{\rm{v}} = {\rm{3v}}\), then\({\rm{u}} \cdot {\rm{v}} = {\rm{0}}\).

c. An\(n \times n\)symmetric matrix has n distinct real eigenvalues.

d. For a nonzero \({\rm{v}}\) in \({\mathbb{R}^n}\) , the matrix \({\rm{v}}{{\rm{v}}^T}\) is called a projection matrix.

Determine which of the matrices in Exercises 1–6 are symmetric.

5. \(\left( {\begin{aligned}{{}{}}{ - 6}&2&0\\2&{ - 6}&2\\0&2&{ - 6}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free