Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question 11: Prove that any \(n \times n\) matrix A admits a polar decomposition of the form \(A = PQ\), where P is a \(n \times n\) positive semidefinite matrix with the same rank as A and where Q is an \(n \times n\) orthogonal matrix. (Hint: Use a singular value decomposition, \(A = U\sum {V^T}\), and observe that \(A = \left( {U\sum {U^T}} \right)\left( {U{V^T}} \right)\).) This decomposition is used, for instance, in mechanical engineering to model the deformation of a material. The matrix P describe the stretching or compression of the material (in the directions of the eigenvectors of P), and Q describes the rotation of the material in space.

Short Answer

Expert verified

It is proved that any \(n \times n\) matrix A admits a polar decomposition of the for \(A = PQ\).

Step by step solution

01

The Singular Value Decomposition

Consider \(m \times n\) matrix with rank \(r\) as \(A\). There is a \(m \times n\) matrix \(\sum \) as seen in (3) wherein the diagonal entriesin \(D\) are the first \(r\) singular valuesof A, \({\sigma _1} \ge \cdots \ge {\sigma _r} > 0,\) and there arises an \(m \times m\) orthogonal matrix \(U\) and an \(n \times n\) orthogonal matrix \(V\) such that \(A = U\sum {V^T}\).

02

Show that any \(n \times n\) matrix A admits a polar decomposition of the form \(A = PQ\)

Consider that \(A = U\sum {V^T}\) as a singular value decomposition of A. \({U^T}U = I\) and \(A = U\sum {U^T}U{V^T} = PQ\) wherein \(P = U\sum {U^T} = U\sum {U^{ - 1}}\) and \(Q = U{V^T}\) because \(U\) is orthogonal. \(P\) contains nonnegative eigenvalues since \(P\) are the same as \(\sum \) that is diagonal with nonnegative diagonal entries because \(\sum \) are symmetric. Therefore, \(P\) is positive semidefinite. \(Q\) is orthogonal since \(Q\) is the product of orthogonal matrices.

Hence, it is proved that any \(n \times n\) matrix A admits a polar decomposition of the form \(A = PQ\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the matrix of the quadratic form. Assume x is in \({\mathbb{R}^2}\).

a. \(3x_1^2 + 2x_2^2 - 5x_3^2 - 6{x_1}{x_2} + 8{x_1}{x_3} - 4{x_2}{x_3}\)

b. \(6{x_1}{x_2} + 4{x_1}{x_3} - 10{x_2}{x_3}\)

Question: 11. Given multivariate data \({X_1},................,{X_N}\) (in \({\mathbb{R}^p}\)) in mean deviation form, let \(P\) be a \(p \times p\) matrix, and define \({Y_k} = {P^T}{X_k}{\rm{ for }}k = 1,......,N\).

  1. Show that \({Y_1},................,{Y_N}\) are in mean-deviation form. (Hint: Let \(w\) be the vector in \({\mathbb{R}^N}\) with a 1 in each entry. Then \(\left( {{X_1},................,{X_N}} \right)w = 0\) (the zero vector in \({\mathbb{R}^p}\)).)
  2. Show that if the covariance matrix of \({X_1},................,{X_N}\) is \(S\), then the covariance matrix of \({Y_1},................,{Y_N}\) is \({P^T}SP\).

Question: In Exercises 1 and 2, convert the matrix of observations to mean deviation form, and construct the sample covariance matrix.

\(2.\,\,\left( {\begin{array}{*{20}{c}}1&5&2&6&7&3\\3&{11}&6&8&{15}&{11}\end{array}} \right)\)

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

19. \(\left( {\begin{aligned}{{}}3&{ - 2}&4\\{ - 2}&6&2\\4&2&3\end{aligned}} \right)\)

In Exercises 17–24, \(A\) is an \(m \times n\) matrix with a singular value decomposition \(A = U\Sigma {V^T}\) , where \(U\) is an \(m \times m\) orthogonal matrix, \({\bf{\Sigma }}\) is an \(m \times n\) “diagonal” matrix with \(r\) positive entries and no negative entries, and \(V\) is an \(n \times n\) orthogonal matrix. Justify each answer.

19. Show that the columns of\(V\)are eigenvectors of\({A^T}A\), the columns of\(U\)are eigenvectors of\(A{A^T}\), and the diagonal entries of\({\bf{\Sigma }}\)are the singular values of \(A\). (Hint: Use the SVD to compute \({A^T}A\) and \(A{A^T}\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free