Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Classify the quadratic forms in Exercises 9–18. Then make a change of variable, \({\bf{x}} = P{\bf{y}}\), that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct \(P\) using the methods of Section 7.1.

11. \({\bf{2}}x_{\bf{1}}^{\bf{2}} - {\bf{4}}{x_{\bf{1}}}{x_{\bf{2}}} - x_{\bf{2}}^{\bf{2}}\)

Short Answer

Expert verified

The new quadratic form is \(Q\left( {\rm{y}} \right) = - 2y_1^2 + 3y_2^2\). The matrix \(P\) is \(P = \left( {\begin{aligned}{{}}{\frac{1}{{\sqrt 5 }}}&{\frac{{ - 2}}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{aligned}} \right)\).

Step by step solution

01

Step 1: Find the coefficient matrix of the quadratic form

Consider \(2x_1^2 - 4{x_1}{x_2} - x_2^2\).

As the quadratic form is:

\({{\rm{x}}^T}A{\rm{x}} = \left( {\begin{aligned}{{}}{{x_1}}&{{x_2}}\end{aligned}} \right)\left( {\begin{aligned}{{}}2&{ - 2}\\{ - 2}&{ - 1}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right)\)

Therefore, thecoefficient matrix of the quadratic form is\(A = \left( {\begin{aligned}{{}}2&{ - 2}\\{ - 2}&{ - 1}\end{aligned}} \right)\).

Now Find the characteristic polynomial.

\(\begin{aligned}{}\left| {\begin{aligned}{{}}{2 - \lambda }&{ - 2}\\{ - 2}&{ - 1 - \lambda }\end{aligned}} \right| & = 0\\\left( {2 - \lambda } \right)\left( { - 1 - \lambda } \right) - 4 = 0\\\left( {2 - \lambda } \right)\left( { - 1 - \lambda } \right) & = 4\\\lambda & = - 2,3\end{aligned}\)

02

Find the basis for eigen value \( - 2\)

\(\begin{aligned}{}\left( {A - \lambda I} \right){{\rm{u}}_1} & = 0\\\left( {\begin{aligned}{{}}4&{ - 2}\\{ - 2}&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) & = 0\\4{x_1} - 2{x_2} & = 0\\ - 2{x_1} + {x_2} & = 0\end{aligned}\)

Thus, the eigen vector is \({{\rm{u}}_1} = \left( {\begin{aligned}{{}}1\\2\end{aligned}} \right)\).

03

Find the basis for eigen value \({\bf{3}}\)

\(\begin{aligned}{}\left( {A - \lambda I} \right){{\rm{u}}_2} & = 0\\\left( {\begin{aligned}{{}}{ - 1}&{ - 2}\\{ - 2}&{ - 4}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) & = 0\\ - {x_1} - 2{x_2} & = 0\\ - 2{x_1} - 4{x_2} & = 0\end{aligned}\)

Thus, the eigenvector is \({{\rm{u}}_2} = \left( {\begin{aligned}{{}}{ - 2}\\1\end{aligned}} \right)\).

04

Find the orthonormal basis for eigen value \({\bf{ - 2}}\)

\(\begin{aligned}{}{P_1} & = \frac{1}{{\left\| {{{\rm{u}}_1}} \right\|}}{{\rm{u}}_1}\\ & = \frac{1}{{\sqrt {1 + 4} }}\left( {\begin{aligned}{{}}1\\2\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}}{\frac{1}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}\end{aligned}} \right)\end{aligned}\)

05

Find the orthonormal basis for eigenvalue \({\bf{3}}\)

\(\begin{aligned}{}{P_1} &= \frac{1}{{\left\| {{{\rm{u}}_2}} \right\|}}{{\rm{u}}_2}\\ & = \frac{1}{{\sqrt {1 + 4} }}\left( {\begin{aligned}{{}}{ - 2}\\1\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}}{\frac{{ - 2}}{{\sqrt 5 }}}\\{\frac{1}{{\sqrt 5 }}}\end{aligned}} \right)\end{aligned}\)

Therefore, the matrix\(P\)and\(D\)are shown below:

\(\begin{aligned}{}P & = \left( {\begin{aligned}{{}}{{P_1}}&{{P_2}}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}}{\frac{1}{{\sqrt 5 }}}&{\frac{{ - 2}}{{\sqrt 5 }}}\\{\frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}\end{aligned}} \right)\end{aligned}\)

\(D = \left( {\begin{aligned}{{}}{ - 2}&0\\0&3\end{aligned}} \right)\)

Now write the new quadratic form by using the transformation\({\rm{x}} = P{\rm{y}}\).

\(\begin{aligned}{}Q\left( {\rm{x}} \right) & = {{\rm{x}}^T}A{\rm{x}}\\ & = {\left( {P{\rm{y}}} \right)^T}A\left( {P{\rm{y}}} \right)\\ & = {{\rm{y}}^T}{P^T}AP{\rm{y}}\\ & = {{\rm{y}}^T}D{\rm{y}}\\ & = Q\left( {\rm{y}} \right)\end{aligned}\)

Therefore,

\(\begin{aligned}{}{{\rm{y}}^T}D{\rm{y}} & = \left( {\begin{aligned}{{}}{{y_1}}&{{y_2}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{ - 2}&0\\0&3\end{aligned}} \right)\left( {\begin{aligned}{{}}{{y_1}}\\{{y_2}}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}}{ - 2{y_1}}&{3{y_2}}\end{aligned}} \right)\left( {\begin{aligned}{{}}{{y_1}}\\{{y_2}}\end{aligned}} \right)\\ & = - 2y_1^2 + 3y_2^2\end{aligned}\)

Thus, the new quadratic form is \(Q\left( {\rm{y}} \right) = - 2y_1^2 + 3y_2^2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Construct a spectral decomposition of A from Example 2.

Question: 6. Let A be an \(n \times n\) symmetric matrix. Use Exercise 5 and an eigenvector basis for \({\mathbb{R}^n}\) to give a second proof of the decomposition in Exercise 4(b).

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

21. \(\left( {\begin{aligned}{{}}4&3&1&1\\3&4&1&1\\1&1&4&3\\1&1&3&4\end{aligned}} \right)\)

Orhtogonally diagonalize the matrices in Exercises 37-40. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and for each eigenvalue \(\lambda \), find an orthogonal basis for \({\bf{Nul}}\left( {A - \lambda I} \right)\), as in Examples 2 and 3.

40. \(\left( {\begin{aligned}{{}}{\bf{8}}&{\bf{2}}&{\bf{2}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{2}}&{\bf{8}}&{\bf{2}}&{ - {\bf{6}}}&{\bf{9}}\\{\bf{2}}&{\bf{2}}&{\bf{8}}&{ - {\bf{6}}}&{\bf{9}}\\{ - {\bf{6}}}&{ - {\bf{6}}}&{ - {\bf{6}}}&{{\bf{24}}}&{\bf{9}}\\{\bf{9}}&{\bf{9}}&{\bf{9}}&{\bf{9}}&{ - {\bf{21}}}\end{aligned}} \right)\)

In Exercises 25 and 26, mark each statement True or False. Justify each answer.

26.

  1. There are symmetric matrices that are not orthogonally diagonizable.
  2. b. If \(B = PD{P^T}\), where \({P^T} = {P^{ - {\bf{1}}}}\) and D is a diagonal matrix, then B is a symmetric matrix.
  3. c. An orthogonal matrix is orthogonally diagonizable.
  4. d. The dimension of an eigenspace of a symmetric matrix is sometimes less than the multiplicity of the corresponding eigenvalue.
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free