Chapter 7: Q10E (page 395)
Question:Repeat Exercise 9 with \(S = \left( {\begin{array}{*{20}{c}}5&4&2\\4&{11}&4\\2&4&5\end{array}} \right)\).
Short Answer
The variance ofobtained as \({\lambda _1} = 15\).
Chapter 7: Q10E (page 395)
Question:Repeat Exercise 9 with \(S = \left( {\begin{array}{*{20}{c}}5&4&2\\4&{11}&4\\2&4&5\end{array}} \right)\).
The variance ofobtained as \({\lambda _1} = 15\).
All the tools & learning materials you need for study success - in one app.
Get started for freeOrthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix \(P\) and a diagonal matrix \(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17) \( - {\bf{4}}\), 4, 7; (18) \( - {\bf{3}}\), \( - {\bf{6}}\), 9; (19) \( - {\bf{2}}\), 7; (20) \( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.
21. \(\left( {\begin{aligned}{{}}4&3&1&1\\3&4&1&1\\1&1&4&3\\1&1&3&4\end{aligned}} \right)\)
(M) Compute an SVD of each matrix in Exercises 26 and 27. Report the final matrix entries accurate to two decimal places. Use the method of Examples 3 and 4.
26. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{18}}}&{{\bf{13}}}&{ - {\bf{4}}}&{\bf{4}}\\{\bf{2}}&{{\bf{19}}}&{ - {\bf{4}}}&{{\bf{12}}}\\{ - {\bf{14}}}&{{\bf{11}}}&{ - {\bf{12}}}&{\bf{8}}\\{ - {\bf{2}}}&{{\bf{21}}}&{\bf{4}}&{\bf{8}}\end{array}} \right)\)
Determine which of the matrices in Exercises 1–6 are symmetric.
3. \(\left( {\begin{aligned}{{}}2&{\,\,3}\\{\bf{2}}&4\end{aligned}} \right)\)
In Exercises 3-6, find (a) the maximum value of \(Q\left( {\rm{x}} \right)\) subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\), (b) a unit vector \({\rm{u}}\) where this maximum is attained, and (c) the maximum of \(Q\left( {\rm{x}} \right)\) subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1{\rm{ and }}{{\rm{x}}^T}{\rm{u}} = 0\).
4. \(Q\left( x \right) = 3x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1^{}x_2^{} + 2x_1^{}x_3^{} + 2x_2^{}x_3^{}\).
Let u be a unit vector in \({\mathbb{R}^n}\), and let \(B = {\bf{u}}{{\bf{u}}^T}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.