Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 3-6, find (a) the maximum value of\(Q\left( {\rm{x}} \right)\)subject to the constraint\({{\rm{x}}^T}{\rm{x}} = 1\), (b) a unit vector\({\rm{u}}\)where this maximum is attained, and (c) the maximum of\(Q\left( {\rm{x}} \right)\)subject to the constraints\({{\rm{x}}^T}{\rm{x}} = 1{\rm{ and }}{{\rm{x}}^T}{\rm{u}} = 0\).

3.\(Q\left( x \right) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1^{}x_2^{} - 4x_2^{}x_3^{}\).

Short Answer

Expert verified
  1. The maximum value of \(Q\left( {\rm{x}} \right)\) the subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\) is \(9\).
  2. A unit vector \({\rm{u}}\) where this maximum is attained is \({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/
  3. {\vphantom {{ - 1} 3}} \right.
  4. \kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/
  5. {\vphantom {{ - 2} 3}} \right.
  6. \kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/
  7. {\vphantom {2 3}} \right.
  8. \kern-\nulldelimiterspace} 3}}\end{array}} \right]\).
  9. The maximum of \(Q\left( {\rm{x}} \right)\) subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1\)and \({{\rm{x}}^T}{\rm{u}} = 0\) is \({\lambda _2} = 6\).

Step by step solution

01

Find the greatest eigenvalue

As per the question, we have:

\(Q\left( {\rm{x}} \right) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1^{}x_2^{} - 4x_2^{}x_3^{}\)

The maximum value of the given function subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)will be the greatest eigenvalue.

So, from exercise 1, the eigenvalues are 9, 6, and 3. This implies that the greatest eigenvalue is 9.

\({\lambda _1} = 9\)

Hence, the maximum value of \(Q\left( {\rm{x}} \right)\) the subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\) is \(9\).

02

Find the vector for this greatest eigenvalue

Apply the theorem which states that the value of\({{\rm{x}}^T}A{\rm{x}}\) is maximum when \({\rm{x}}\) is a unit eigenvector \({{\rm{u}}_1}\) corresponding to the greatest eigenvalue \({\lambda _1}\).

The eigenvector that corresponds to this eigenvalue is:

\(u = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{array}} \right]\).

Hence,a unit vector \({\rm{u}}\) where this maximum is attained is \({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{array}} \right]\).

03

Find the second greatest eigenvalue. 

The maximum value of the given function subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and\({{\rm{x}}^T}{\rm{u}} = 0\) will be the second largest eigenvalue. That is:

\({\lambda _2} = 6\)

Hence, the maximum of \(Q\left( {\rm{x}} \right)\) the subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1\) and \({{\rm{x}}^T}{\rm{u}} = 0\) is \({\lambda _2} = 6\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free