Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 3-6, find (a) the maximum value of\(Q\left( {\rm{x}} \right)\)subject to the constraint\({{\rm{x}}^T}{\rm{x}} = 1\), (b) a unit vector\({\rm{u}}\)where this maximum is attained, and (c) the maximum of\(Q\left( {\rm{x}} \right)\)subject to the constraints\({{\rm{x}}^T}{\rm{x}} = 1{\rm{ and }}{{\rm{x}}^T}{\rm{u}} = 0\).

3.\(Q\left( x \right) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1^{}x_2^{} - 4x_2^{}x_3^{}\).

Short Answer

Expert verified
  1. The maximum value of \(Q\left( {\rm{x}} \right)\) the subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\) is \(9\).
  2. A unit vector \({\rm{u}}\) where this maximum is attained is \({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/
  3. {\vphantom {{ - 1} 3}} \right.
  4. \kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/
  5. {\vphantom {{ - 2} 3}} \right.
  6. \kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/
  7. {\vphantom {2 3}} \right.
  8. \kern-\nulldelimiterspace} 3}}\end{array}} \right]\).
  9. The maximum of \(Q\left( {\rm{x}} \right)\) subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1\)and \({{\rm{x}}^T}{\rm{u}} = 0\) is \({\lambda _2} = 6\).

Step by step solution

01

Find the greatest eigenvalue

As per the question, we have:

\(Q\left( {\rm{x}} \right) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1^{}x_2^{} - 4x_2^{}x_3^{}\)

The maximum value of the given function subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)will be the greatest eigenvalue.

So, from exercise 1, the eigenvalues are 9, 6, and 3. This implies that the greatest eigenvalue is 9.

\({\lambda _1} = 9\)

Hence, the maximum value of \(Q\left( {\rm{x}} \right)\) the subject to the constraint \({{\rm{x}}^T}{\rm{x}} = 1\) is \(9\).

02

Find the vector for this greatest eigenvalue

Apply the theorem which states that the value of\({{\rm{x}}^T}A{\rm{x}}\) is maximum when \({\rm{x}}\) is a unit eigenvector \({{\rm{u}}_1}\) corresponding to the greatest eigenvalue \({\lambda _1}\).

The eigenvector that corresponds to this eigenvalue is:

\(u = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{array}} \right]\).

Hence,a unit vector \({\rm{u}}\) where this maximum is attained is \({\rm{u}} = \pm \left[ {\begin{array}{*{20}{c}}{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{{ - 2} \mathord{\left/

{\vphantom {{ - 2} 3}} \right.

\kern-\nulldelimiterspace} 3}}\\{{2 \mathord{\left/

{\vphantom {2 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{array}} \right]\).

03

Find the second greatest eigenvalue. 

The maximum value of the given function subjected to constraints\({{\rm{x}}^T}{\rm{x}} = 1\)and\({{\rm{x}}^T}{\rm{u}} = 0\) will be the second largest eigenvalue. That is:

\({\lambda _2} = 6\)

Hence, the maximum of \(Q\left( {\rm{x}} \right)\) the subject to the constraints \({{\rm{x}}^T}{\rm{x}} = 1\) and \({{\rm{x}}^T}{\rm{u}} = 0\) is \({\lambda _2} = 6\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 12. Exercises 12–14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

Verify the properties of\({A^ + }\):

a. For each\({\rm{y}}\)in\({\mathbb{R}^m}\),\(A{A^ + }{\rm{y}}\)is the orthogonal projection of\({\rm{y}}\)onto\({\rm{Col}}\,A\).

b. For each\({\rm{x}}\)in\({\mathbb{R}^n}\),\({A^ + }A{\rm{x}}\)is the orthogonal projection of\({\rm{x}}\)onto\({\rm{Row}}\,A\).

c. \(A{A^ + }A = A\)and \({A^ + }A{A^ + } = {A^ + }\).

25.Let \({\bf{T:}}{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\) be a linear transformation. Describe how to find a basis \(B\) for \({\mathbb{R}^n}\) and a basis \(C\) for \({\mathbb{R}^m}\) such that the matrix for \(T\) relative to \(B\) and \(C\) is an \(m \times n\) “diagonal” matrix.

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix\(P\)and a diagonal matrix\(D\). To save you time, the eigenvalues in Exercises 17–22 are: (17)\( - {\bf{4}}\), 4, 7; (18)\( - {\bf{3}}\),\( - {\bf{6}}\), 9; (19)\( - {\bf{2}}\), 7; (20)\( - {\bf{3}}\), 15; (21) 1, 5, 9; (22) 3, 5.

18. \(\left( {\begin{aligned}{{}}1&{ - 6}&4\\{ - 6}&2&{ - 2}\\4&{ - 2}&{ - 3}\end{aligned}} \right)\)

Determine which of the matrices in Exercises 1–6 are symmetric.

5. \(\left( {\begin{aligned}{{}{}}{ - 6}&2&0\\2&{ - 6}&2\\0&2&{ - 6}\end{aligned}} \right)\)

Question: 6. Let A be an \(n \times n\) symmetric matrix. Use Exercise 5 and an eigenvector basis for \({\mathbb{R}^n}\) to give a second proof of the decomposition in Exercise 4(b).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free