Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

[M] In Exercise 14-17, follow the instructions given for Exercise 3-6.

16. \( - 6{\bf{x}}_1^2 - 10{\bf{x}}_2^2 - 13{\bf{x}}_3^2 - 13{\bf{x}}_4^2 - 4{{\bf{x}}_1}{{\bf{x}}_2} - 4{{\bf{x}}_1}{{\bf{x}}_3} - 4{{\bf{x}}_1}{{\bf{x}}_4} + 6{{\bf{x}}_3}{{\bf{x}}_4}\)

Short Answer

Expert verified
  1. \({\lambda _1} = - 4\)is the maximum value of \({{\bf{x}}^T}A{\bf{x}}\) subject to the constraint \({{\bf{x}}^T}A{\bf{x}} = 1\).
  2. The unit vector in which the maximum is attained is \({\bf{u}} = \pm \left[ {\begin{array}{*{20}{c}}{\frac{{ - 3}}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\end{array}} \right]\).
  3. \({\lambda _2} = - 10\)isthe maximum value of \({{\bf{x}}^T}A{\bf{x}}\) subject to the constraint \({{\bf{x}}^T}{\bf{x}} = 1\) and \({{\bf{x}}^T}{\bf{u}} = 0\).

Step by step solution

01

Determine the eigenvalues of the matrix

Obtain the quadratic form of the matrix as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}{ - 6}&{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 10}&0&0\\{ - 2}&0&{ - 13}&3\\{ - 2}&0&3&{ - 13}\end{array}} \right]\)

Use MATLAB code to obtain the eigenvalues of the matrix as shown below:

\(\begin{array}{l} > > {\mathop{\rm A}\nolimits} = \left[ { - 6\,\,\, - 2\,\,\,\, - 2\,\,\,\, - 2;\,\, - 2\,\,\,\, - 10\,\,\,\,0\,\,\,\,0;\, - 2\,\,\,\,0\,\,\, - 13\,\,\,\,3;\, - 2\,\,\,\,0\,\,\,\,3\,\,\,\, - 13} \right];\\ > > {\mathop{\rm E}\nolimits} = {\mathop{\rm eig}\nolimits} \left( {\mathop{\rm A}\nolimits} \right);\end{array}\)

\({\mathop{\rm E}\nolimits} = \left[ {\begin{array}{*{20}{c}}{ - 4}\\{ - 10}\\{ - 12}\\{ - 16}\end{array}} \right]\)

Therefore, the eigenvalues of the matrix \(A\) are \({\lambda _1} = - 4,{\lambda _2} = - 10,{\lambda _3} = - 12,\) and \({\lambda _4} = - 16\).

02

Determine the maximum value of \(Q\left( x \right)\) subject to the constraint \({{\bf{x}}^T}{\mathop{\rm x}\nolimits}  = 1\) 

Theorem 6states that consider \(A\) as a symmetric matrixand \(m = \min \left\{ {{{\bf{x}}^T}A{\bf{x}}:\left\| {\bf{x}} \right\| = 1} \right\},M = \max \left\{ {{{\bf{x}}^T}A{\bf{x}}:\left\| {\bf{x}} \right\| = 1} \right\}\). Then the greatest eigenvalue \({\lambda _1}\) of A is \(M\) and the least eigenvalue of \(A\) is \(m\). \(M\) is the value of \({{\bf{x}}^T}A{\bf{x}}\) if the unit eigenvalue of \({{\bf{u}}_1}\) is \({\bf{x}}\) that corresponds to \(M\). \(m\) is the value of \({{\bf{x}}^T}A{\bf{x}}\) if the unit eigenvalue of \({{\bf{u}}_1}\) is \({\bf{x}}\) that corresponds to \(m\).

It is observed that the greatest eigenvalue of \(A\) is \({\lambda _1} = - 4\).

According to theorem 6, the greatest eigenvalues \({\lambda _1} = - 4\).is the maximum value of \({{\bf{x}}^T}A{\bf{x}}\) subject to the constraint \({{\bf{x}}^T}A{\bf{x}} = 1\).

03

Determine a unit vector u where this maximum is attained

According to theorem 6, the maximum value of \({{\bf{x}}^T}A{\bf{x}}\) subject to the constraint \({{\bf{x}}^T}A{\bf{x}} = 1\) happens at a unit eigenvector that corresponds to the greatest eigenvalue \({\lambda _1}\).

Use the MATLAB code to compute the eigenvector of the matrix A as shown below:

\( > > \left[ {{\mathop{\rm V}\nolimits} \,\,{\mathop{\rm D}\nolimits} } \right] = {\mathop{\rm eigs}\nolimits} \left( A \right);\)

\({\mathop{\rm V}\nolimits} = \left[ {\begin{array}{*{20}{c}}{ - 3}&0&1&0\\1&{ - 2}&1&0\\1&1&1&{ - 1}\\1&1&1&1\end{array}} \right]\)

Therefore, the eigenvector corresponds to the greatest eigenvalues \({\lambda _1} = - 4\) is \(\left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\1\\1\end{array}} \right]\).

Normalize the vector to obtain the unit vector as shown below:

\(\begin{array}{c}{\bf{u}} = \frac{1}{{\sqrt {12} }}\left[ {\begin{array}{*{20}{c}}{ - 3}\\1\\1\\1\end{array}} \right]\\ = \pm \left[ {\begin{array}{*{20}{c}}{\frac{{ - 3}}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\end{array}} \right]\end{array}\)

Therefore, the unit vector in which the maximum is attained is \({\bf{u}} = \pm \left[ {\begin{array}{*{20}{c}}{\frac{{ - 3}}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\\{\frac{1}{{\sqrt {12} }}}\end{array}} \right]\).

04

Determine a maximum value of \(Q\left( x \right)\) subject to the constraints \({{\bf{x}}^T}{\mathop{\rm x}\nolimits}  = 1\) and \({{\bf{x}}^T}{\bf{u}} = 0\)

Theorem 7states that consider that \(A,{\lambda _1}\), and \({{\bf{u}}_1}\) as in theorem 6. The maximum value of \({{\bf{x}}^T}A{\bf{x}}\) subject to the constraint

\({{\bf{x}}^T}{\bf{x}} = 1\)and \({{\bf{x}}^T}{\bf{u}} = 0\) is equal to the second greatest eigenvalue, \({\lambda _2}\) and the maximum is attained if the eigenvector \({{\bf{u}}_2}\) that corresponds to \({\lambda _2}\) is x.

It is observed that the second greatest eigenvalue of A is \({\lambda _2} = - 10\).

According to theorem 7, the second greatest eigenvalue \({\lambda _2} = - 10\) isthe maximum value of \({{\bf{x}}^T}A{\bf{x}}\) subject to the constraint \({{\bf{x}}^T}{\bf{x}} = 1\) and \({{\bf{x}}^T}{\bf{u}} = 0\).

Therefore, \({\lambda _2} = - 10\) is the maximum value of \({{\bf{x}}^T}A{\bf{x}}\) subject to the constraint \({{\bf{x}}^T}{\bf{x}} = 1\) and \({{\bf{x}}^T}{\bf{u}} = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose A is a symmetric \(n \times n\) matrix and B is any \(n \times m\) matrix. Show that \({B^T}AB\), \({B^T}B\), and \(B{B^T}\) are symmetric matrices.

Question: 2. Let \(\left\{ {{{\bf{u}}_1},{{\bf{u}}_2},....,{{\bf{u}}_n}} \right\}\) be an orthonormal basis for \({\mathbb{R}_n}\) , and let \({\lambda _1},....{\lambda _n}\) be any real scalars. Define

\(A = {\lambda _1}{{\bf{u}}_1}{\bf{u}}_1^T + ..... + {\lambda _n}{\bf{u}}_n^T\)

a. Show that A is symmetric.

b. Show that \({\lambda _1},....{\lambda _n}\) are the eigenvalues of A

Question: Repeat Exercise 15 for the following SVD of a \({\bf{3 \times 4}}\) matrix \(A\):

\(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{ - {\bf{.86}}}&{ - {\bf{.11}}}&{ - {\bf{.50}}}\\{{\bf{.31}}}&{{\bf{.68}}}&{ - {\bf{.67}}}\\{{\bf{.41}}}&{ - {\bf{.73}}}&{ - {\bf{5}}{\bf{.5}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{\bf{12}}{\bf{.48}}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{{\bf{6}}{\bf{.34}}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}} \right){\bf{ \times }}\left( {\begin{array}{*{20}{c}}{{\bf{.66}}}&{ - {\bf{.03}}}&{ - {\bf{.35}}}&{{\bf{.66}}}\\{ - {\bf{1}}{\bf{.3}}}&{ - {\bf{.90}}}&{ - {\bf{.39}}}&{ - {\bf{.13}}}\\{{\bf{.65}}}&{{\bf{.08}}}&{ - {\bf{.16}}}&{ - {\bf{.73}}}\\{ - {\bf{.34}}}&{{\bf{.42}}}&{ - {\bf{8}}{\bf{.4}}}&{ - {\bf{0}}{\bf{.8}}}\end{array}} \right)\)

Question: 12. Exercises 12โ€“14 concern an \(m \times n\) matrix \(A\) with a reduced singular value decomposition, \(A = {U_r}D{V_r}^T\), and the pseudoinverse \({A^ + } = {U_r}{D^{ - 1}}{V_r}^T\).

Verify the properties of\({A^ + }\):

a. For each\({\rm{y}}\)in\({\mathbb{R}^m}\),\(A{A^ + }{\rm{y}}\)is the orthogonal projection of\({\rm{y}}\)onto\({\rm{Col}}\,A\).

b. For each\({\rm{x}}\)in\({\mathbb{R}^n}\),\({A^ + }A{\rm{x}}\)is the orthogonal projection of\({\rm{x}}\)onto\({\rm{Row}}\,A\).

c. \(A{A^ + }A = A\)and \({A^ + }A{A^ + } = {A^ + }\).

Suppose Aand B are orthogonally diagonalizable and \(AB = BA\). Explain why \(AB\) is also orthogonally diagonalizable.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free