Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9-12, find a unit vector in the direction of the given vector.

9. \(\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\)

Short Answer

Expert verified

The unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{{ - 3}}{5}}\\{\frac{4}{5}}\end{aligned}} \right)\).

Step by step solution

01

Definition of a unit vector

Aunit vectoris a vector with a length of 1. When dividing a nonzero vector v by its length, namely, multiply by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\), we get a unit vector u since \(\left( {\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}} \right)\left\| {\mathop{\rm v}\nolimits} \right\|\) is the length of u. The process of producing u from v is known as thenormalizingv, and we describe that u is in the same direction as v.

02

Determine the unit vector in the direction

It is given that \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\).

Compute the length of \({\mathop{\rm v}\nolimits} \) as shown below:

\(\begin{aligned}{c}\left\| {\mathop{\rm v}\nolimits} \right\| &= \sqrt {{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \\ &= \sqrt {{{\left( { - 30} \right)}^2} + {{40}^2}} \\ &= \sqrt {900 + 1600} \\ &= \sqrt {2500} \\ &= 50\end{aligned}\)

Multiply v by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\) to obtain the unit vector \({\mathop{\rm u}\nolimits} \) as shown below:

\(\begin{aligned}{c}{\mathop{\rm u}\nolimits} &= \frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}{\mathop{\rm v}\nolimits} \\ &= \frac{1}{{50}}\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{\frac{{ - 30}}{{50}}}\\{\frac{{40}}{{50}}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{\frac{{ - 3}}{5}}\\{\frac{4}{5}}\end{aligned}} \right)\end{aligned}\)

Thus, the unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{{ - 3}}{5}}\\{\frac{4}{5}}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

  1. \(\left( {1,0} \right),\left( {2,1} \right),\left( {4,2} \right),\left( {5,3} \right)\)

Question: In Exercises 9-12, find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

11. \(A = \left( {\begin{aligned}{{}{}}{\bf{4}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{ - {\bf{5}}}&{\bf{1}}\\{\bf{6}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{ - {\bf{1}}}&{ - {\bf{5}}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{9}}\\{\bf{0}}\\{\bf{0}}\\{\bf{0}}\end{aligned}} \right)\)

In Exercises 11 and 12, find the closest point to\[{\bf{y}}\]in the subspace\[W\]spanned by\[{{\bf{v}}_1}\], and\[{{\bf{v}}_2}\].

11.\[y = \left[ {\begin{aligned}3\\1\\5\\1\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}3\\1\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

In Exercises 5 and 6, describe all least squares solutions of the equation \(A{\bf{x}} = {\bf{b}}\).

6.\(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\end{aligned}} \right)\),\({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{7}}\\{\bf{2}}\\{\bf{3}}\\{\bf{6}}\\{\bf{5}}\\{\bf{4}}\end{aligned}} \right)\)

In Exercises 9-12, find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

10. \(A = \left[ {\begin{aligned}{{}{}}{\bf{1}}&{\bf{2}}\\{ - {\bf{1}}}&{\bf{4}}\\{\bf{1}}&{\bf{2}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{3}}\\{ - {\bf{1}}}\\{\bf{5}}\end{aligned}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free