Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9-12, find a unit vector in the direction of the given vector.

9. \(\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\)

Short Answer

Expert verified

The unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{{ - 3}}{5}}\\{\frac{4}{5}}\end{aligned}} \right)\).

Step by step solution

01

Definition of a unit vector

Aunit vectoris a vector with a length of 1. When dividing a nonzero vector v by its length, namely, multiply by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\), we get a unit vector u since \(\left( {\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}} \right)\left\| {\mathop{\rm v}\nolimits} \right\|\) is the length of u. The process of producing u from v is known as thenormalizingv, and we describe that u is in the same direction as v.

02

Determine the unit vector in the direction

It is given that \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\).

Compute the length of \({\mathop{\rm v}\nolimits} \) as shown below:

\(\begin{aligned}{c}\left\| {\mathop{\rm v}\nolimits} \right\| &= \sqrt {{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \\ &= \sqrt {{{\left( { - 30} \right)}^2} + {{40}^2}} \\ &= \sqrt {900 + 1600} \\ &= \sqrt {2500} \\ &= 50\end{aligned}\)

Multiply v by \(\frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}\) to obtain the unit vector \({\mathop{\rm u}\nolimits} \) as shown below:

\(\begin{aligned}{c}{\mathop{\rm u}\nolimits} &= \frac{1}{{\left\| {\mathop{\rm v}\nolimits} \right\|}}{\mathop{\rm v}\nolimits} \\ &= \frac{1}{{50}}\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{\frac{{ - 30}}{{50}}}\\{\frac{{40}}{{50}}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}{\frac{{ - 3}}{5}}\\{\frac{4}{5}}\end{aligned}} \right)\end{aligned}\)

Thus, the unit vector \({\mathop{\rm u}\nolimits} \) in the direction of v is \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{{ - 3}}{5}}\\{\frac{4}{5}}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

To measure the take-off performance of an airplane, the horizontal position of the plane was measured every second, from \(t = 0\) to \(t = 12\). The positions (in feet) were: 0, 8.8, 29.9, 62.0, 104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7, 686.8, 809.2.

a. Find the least-squares cubic curve \(y = {\beta _0} + {\beta _1}t + {\beta _2}{t^2} + {\beta _3}{t^3}\) for these data.

b. Use the result of part (a) to estimate the velocity of the plane when \(t = 4.5\) seconds.

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

2. \(A = \left( {\begin{aligned}{{}{}}{\bf{2}}&{\bf{1}}\\{ - {\bf{2}}}&{\bf{0}}\\{\bf{2}} {\bf{3}}\end{aligned}} \right)\), \(b = \left( {\begin{aligned}{{}{}}{ - {\bf{5}}}\\{\bf{8}}\\{\bf{1}}\end{aligned}} \right)\)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}5\\{ - 4}\\0\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\1\\{ - 3}\\8\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\3\\5\\{ - 1}\end{array}} \right]\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

9. \(\left[ {\begin{aligned}{{}{}}3&{ - 5}&1\\1&1&1\\{ - 1}&5&{ - 2}\\3&{ - 7}&8\end{aligned}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free