Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 9-12, find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

9. \(A = \left[ {\begin{aligned}{{}{}}{\bf{1}}&{\bf{5}}\\{\bf{3}}&{\bf{1}}\\{ - {\bf{2}}}&{\bf{4}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{4}}\\{ - {\bf{2}}}\\{ - {\bf{3}}}\end{aligned}} \right]\)

Short Answer

Expert verified
  1. The orthogonal projection of bonto Col A is \(\left[ {\begin{aligned}{{}{}}1\\1\\0\end{aligned}} \right]\).
  2. The least-square solution is \(\left[ {\begin{aligned}{{}{}}{\frac{2}{7}}\\{\frac{1}{7}}\end{aligned}} \right]\).

Step by step solution

01

Find the orthogonal projection of \({\bf{\hat b}}\)

The orthogonal projection of b onto \({\rm{Col}}A\) is:

\(\begin{aligned}{}{\bf{\hat b}} &= {\rm{pro}}{{\rm{j}}_{{\rm{col}}A}}{\bf{b}}\\& = \frac{{{\bf{b}} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_1} + \frac{{{\bf{b}} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_2}\\ & = \frac{{\left[ {\begin{aligned}{{}{}}4&{ - 2}&{ - 3}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}1\\3\\{ - 2}\end{aligned}} \right]}}{{\left[ {\begin{aligned}{{}{}}1&3&{ - 2}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}1\\3\\{ - 2}\end{aligned}} \right]}}{{\bf{v}}_1} + \frac{{\left[ {\begin{aligned}{{}{}}4&{ - 2}&{ - 3}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}5\\1\\4\end{aligned}} \right]}}{{\left[ {\begin{aligned}{{}{}}5&1&4\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}5\\1\\4\end{aligned}} \right]}}{{\bf{v}}_2}\\ & = \frac{4}{{14}}\left[ {\begin{aligned}{{}{}}1\\3\\{ - 2}\end{aligned}} \right] + \frac{6}{{42}}\left[ {\begin{aligned}{{}{}}5\\1\\4\end{aligned}} \right]\end{aligned}\)

Solve further,

\(\begin{aligned}{}{\bf{\hat b}} & = \left[ {\begin{aligned}{{}{}}{\frac{2}{7} + \frac{5}{7}}\\{\frac{6}{7} + \frac{1}{7}}\\{ - \frac{4}{7} + \frac{4}{7}}\end{aligned}} \right]\\ & = \left[ {\begin{aligned}{{}{}}1\\1\\0\end{aligned}} \right]\end{aligned}\)

The orthogonal projection of b onto ColA is \(\left[ {\begin{aligned}{{}{}}1\\1\\0\end{aligned}} \right]\).

02

Find the normal equation

Find the product \({A^T}A\).

\(\begin{aligned}{}{A^T}A & = \left[ {\begin{aligned}{{}{}}1&3&{ - 2}\\5&1&4\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}1&5\\3&1\\{ - 2}&4\end{aligned}} \right]\\ & = \left[ {\begin{aligned}{{}{}}{14}&0\\0&{42}\end{aligned}} \right]\end{aligned}\)

Find the product \({A^T}{\bf{b}}\).

\(\begin{aligned}{}{A^T}{\bf{b}} & = \left[ {\begin{aligned}{{}{}}1&3&{ - 2}\\5&1&4\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}4\\{ - 2}\\{ - 3}\end{aligned}} \right]\\ & = \left[ {\begin{aligned}{{}{}}4\\6\end{aligned}} \right]\end{aligned}\)

The normal equation can be written as:

\(\begin{aligned}{}\left( {{A^T}A} \right){\bf{x}} & = {A^T}{\bf{b}}\\\left[ {\begin{aligned}{{}{}}{14}&0\\0&{42}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right] & = \left[ {\begin{aligned}{{}{}}4\\6\end{aligned}} \right]\end{aligned}\)

03

Find the least square solution

The least-square solution can be calculated as follows:

\(\begin{aligned}{}{\bf{\hat x}} & = {\left( {{A^T}A} \right)^{ - 1}}{A^T}{\bf{b}}\\& = {\left[ {\begin{aligned}{{}{}}{14}&0\\0&{42}\end{aligned}} \right]^{ - 1}}\left[ {\begin{aligned}{{}{}}4\\6\end{aligned}} \right]\\ & = \left[ {\begin{aligned}{{}{}}{\frac{1}{{14}}}&0\\0&{\frac{1}{{42}}}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}4\\6\end{aligned}} \right]\\ & = \left[ {\begin{aligned}{{}{}}{\frac{2}{7}}\\{\frac{1}{7}}\end{aligned}} \right]\end{aligned}\)

Thus, the least square solution is \(\left[ {\begin{aligned}{{}{}}{\frac{2}{7}}\\{\frac{1}{7}}\end{aligned}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let u and v be linearly independent vectors in \({\mathbb{R}^n}\) that are not orthogonal. Describe how to find the best approximation to z in \({\mathbb{R}^n}\) by vectors of the form \({{\bf{x}}_1}{\mathop{\rm u}\nolimits} + {{\bf{x}}_2}{\mathop{\rm u}\nolimits} \) without first constructing an orthogonal basis for \({\mathop{\rm Span}\nolimits} \left\{ {{\bf{u}},{\bf{v}}} \right\}\).

In Exercises 5-14, the space is \(C\left[ {0,2\pi } \right]\) with inner product (6).

7. Show that \({\left\| {\cos kt} \right\|^2} = \pi \) and \({\left\| {\sin kt} \right\|^2} = \pi \) for \(k > 0\).

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

4. \(\left( {2,3} \right),\left( {3,2} \right),\left( {5,1} \right),\left( {6,0} \right)\)

Exercises 19 and 20 involve a design matrix \(X\) with two or more columns and a least-squares solution \(\hat \beta \) of \({\bf{y}} = X\beta \). Consider the following numbers.

(i) \({\left\| {X\hat \beta } \right\|^2}\)โ€”the sum of the squares of the โ€œregression term.โ€ Denote this number by .

(ii) \({\left\| {{\bf{y}} - X\hat \beta } \right\|^2}\)โ€”the sum of the squares for error term. Denote this number by \(SS\left( E \right)\).

(iii) \({\left\| {\bf{y}} \right\|^2}\)โ€”the โ€œtotalโ€ sum of the squares of the \(y\)-values. Denote this number by \(SS\left( T \right)\).

Every statistics text that discusses regression and the linear model \(y = X\beta + \in \) introduces these numbers, though terminology and notation vary somewhat. To simplify matters, assume that the mean of the -values is zero. In this case, \(SS\left( T \right)\) is proportional to what is called the variance of the set of -values.

19. Justify the equation \(SS\left( T \right) = SS\left( R \right) + SS\left( E \right)\). (Hint: Use a theorem, and explain why the hypotheses of the theorem are satisfied.) This equation is extremely important in statistics, both in regression theory and in the analysis of variance.

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

17. a.If \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\) is an orthogonal basis for\(W\), then multiplying

\({v_3}\)by a scalar \(c\) gives a new orthogonal basis \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},c{{\bf{v}}_3}} \right\}\).

b. The Gramโ€“Schmidt process produces from a linearly independent

set \(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)an orthogonal set \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) with the property that for each \(k\), the vectors \({{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}\) span the same subspace as that spanned by \({{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}\).

c. If \(A = QR\), where \(Q\) has orthonormal columns, then \(R = {Q^T}A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free