Chapter 6: Q9E (page 331)
A certain experiment produce the data \(\left( {1,7.9} \right),\left( {2,5.4} \right)\) and \(\left( {3, - .9} \right)\). Describe the model that produces a least-squares fit of these points by a function of the form
\(y = A\cos x + B\sin x\)
Short Answer
The required matrix and vectors are shown as:
Design Matrix: \(X = \left( {\begin{aligned}{\cos 1}&{\sin 1}\\{\cos 2}&{\sin 2}\\{\cos 3}&{\sin 3}\end{aligned}} \right)\)
Observation vector: \({\bf{y}} = \left( {\begin{aligned}{7.9}\\{5.4}\\{ - 0.9}\end{aligned}} \right)\)
Parameter vector: \(\beta = \left( {\begin{aligned}A\\B\end{aligned}} \right)\)