Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find an orthonormal basis of the subspace spanned by the vectors in Exercise 4.

Short Answer

Expert verified

An orthonormal basis is \(\left\{ {\left( {\begin{aligned}{{}{}}{\frac{3}{{\sqrt {50} }}}\\{\frac{{ - 4}}{{\sqrt {50} }}}\\{\frac{5}{{\sqrt {50} }}}\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 6 }}}\\{\frac{2}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 6 }}}\end{aligned}} \right)} \right\}\).

Step by step solution

01

Compute \(\left\| {{{\bf{v}}_1}} \right\|\) and \(\left\| {{{\bf{v}}_2}} \right\|\)

Let the vectors \({{\bf{v}}_1} = \left( {\begin{aligned}{{}{}}3\\{ - 4}\\5\end{aligned}} \right),{{\bf{v}}_2} = \left( {\begin{aligned}{{}{}}3\\6\\3\end{aligned}} \right)\) from Exercise 4.

Compute \(\left\| {{{\bf{v}}_1}} \right\|\) and \(\left\| {{{\bf{v}}_2}} \right\|\) as shown below:

\(\begin{aligned}{}\left\| {{{\bf{v}}_1}} \right\| &= \sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {5^2}} \\ &= \sqrt {9 + 16 + 25} \\ &= \sqrt {50} \\\left\| {{{\bf{v}}_2}} \right\| &= \sqrt {{3^2} + {6^2} + {3^2}} \\ &= \sqrt {9 + 36 + 9} \\ &= \sqrt {54} \\ &= 3\sqrt 6 \end{aligned}\)

02

Determine an orthonormal basis

Obtain an orthonormal basis as shown below:

\(\begin{aligned}{}\left\{ {\frac{{{{\bf{v}}_1}}}{{\left\| {{{\bf{v}}_1}} \right\|}},\frac{{{{\bf{v}}_2}}}{{\left\| {{{\bf{v}}_2}} \right\|}}} \right\} &= \left\{ {\frac{1}{{\sqrt {50} }}\left( {\begin{aligned}{{}{}}3\\{ - 4}\\5\end{aligned}} \right),\frac{1}{{3\sqrt 6 }}\left( {\begin{aligned}{{}{}}3\\6\\3\end{aligned}} \right)} \right\}\\ & = \left\{ {\left( {\begin{aligned}{{}{}}{\frac{3}{{\sqrt {50} }}}\\{\frac{{ - 4}}{{\sqrt {50} }}}\\{\frac{5}{{\sqrt {50} }}}\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 6 }}}\\{\frac{2}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 6 }}}\end{aligned}} \right)} \right\}\end{aligned}\)

Hence, an orthonormal basis is \(\left\{ {\left( {\begin{aligned}{{}{}}{\frac{3}{{\sqrt {50} }}}\\{\frac{{ - 4}}{{\sqrt {50} }}}\\{\frac{5}{{\sqrt {50} }}}\end{aligned}} \right),\left( {\begin{aligned}{{}{}}{\frac{1}{{\sqrt 6 }}}\\{\frac{2}{{\sqrt 6 }}}\\{\frac{1}{{\sqrt 6 }}}\end{aligned}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5 and 6, describe all least squares solutions of the equation \(A{\bf{x}} = {\bf{b}}\).

6.\(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\end{aligned}} \right)\),\({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{7}}\\{\bf{2}}\\{\bf{3}}\\{\bf{6}}\\{\bf{5}}\\{\bf{4}}\end{aligned}} \right)\)

Find an orthonormal basis of the subspace spanned by the vectors in Exercise 3.

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

Question: In Exercises 1 and 2, you may assume that\(\left\{ {{{\bf{u}}_{\bf{1}}},...,{{\bf{u}}_{\bf{4}}}} \right\}\)is an orthogonal basis for\({\mathbb{R}^{\bf{4}}}\).

2.\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{2}}}\\{\bf{1}}\\{ - {\bf{1}}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{3}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\\{ - {\bf{1}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{4}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({\bf{x}} = \left[ {\begin{aligned}{\bf{4}}\\{\bf{5}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right]\)

Write v as the sum of two vectors, one in\({\bf{Span}}\left\{ {{{\bf{u}}_1}} \right\}\)and the other in\({\bf{Span}}\left\{ {{{\bf{u}}_2},{{\bf{u}}_3},{{\bf{u}}_{\bf{4}}}} \right\}\).

Let \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) be an orthonormal set in \({\mathbb{R}^n}\). Verify the following inequality, called Besselโ€™s inequality, which is true for each x in \({\mathbb{R}^n}\):

\({\left\| {\bf{x}} \right\|^2} \ge {\left| {{\bf{x}} \cdot {{\bf{v}}_1}} \right|^2} + {\left| {{\bf{x}} \cdot {{\bf{v}}_2}} \right|^2} + \ldots + {\left| {{\bf{x}} \cdot {{\bf{v}}_p}} \right|^2}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free