Chapter 6: Q7E (page 331)
Compute the least-squares error associated with the least square solution found in Exercise 3.
Short Answer
The least-square error is \(2\sqrt 5 \).
Chapter 6: Q7E (page 331)
Compute the least-squares error associated with the least square solution found in Exercise 3.
The least-square error is \(2\sqrt 5 \).
All the tools & learning materials you need for study success - in one app.
Get started for freeExercises 19 and 20 involve a design matrix \(X\) with two or more columns and a least-squares solution \(\hat \beta \) of \({\bf{y}} = X\beta \). Consider the following numbers.
(i) \({\left\| {X\hat \beta } \right\|^2}\)—the sum of the squares of the “regression term.” Denote this number by \(SS\left( R \right)\).
(ii) \({\left\| {{\bf{y}} - X\hat \beta } \right\|^2}\)—the sum of the squares for error term. Denote this number by \(SS\left( E \right)\).
(iii) \({\left\| {\bf{y}} \right\|^2}\)—the “total” sum of the squares of the -values. Denote this number by \(SS\left( T \right)\).
Every statistics text that discusses regression and the linear model \(y = X\beta + \in \) introduces these numbers, though terminology and notation vary somewhat. To simplify matters, assume that the mean of the -values is zero. In this case, \(SS\left( T \right)\) is proportional to what is called the variance of the set of \(y\)-values.
20. Show that \({\left\| {X\hat \beta } \right\|^2} = {\hat \beta ^T}{X^T}{\bf{y}}\). (Hint: Rewrite the left side and use the fact that \(\hat \beta \) satisfies the normal equations.) This formula for is used in statistics. From this and from Exercise 19, obtain the standard formula for \(SS\left( E \right)\):
\(SS\left( E \right) = {y^T}y - \hat \beta {X^T}y\)
Compute the quantities in Exercises 1-8 using the vectors
\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)
7. \(\left\| {\mathop{\rm w}\nolimits} \right\|\)
Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)
In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.
5. \(\left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}7\\{ - 7}\\{ - 4}\\1\end{aligned}} \right)\)
In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.
3. \(\left( {\begin{aligned}{{}{}}2\\{ - 5}\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}4\\{ - 1}\\2\end{aligned}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.