Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

6. \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \)

Short Answer

Expert verified

The value is \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{{30}}{{49}}}\\{\frac{{ - 10}}{{49}}}\\{\frac{{15}}{{49}}}\end{aligned}} \right)\).

Step by step solution

01

Inner product

Consider \({\mathop{\rm u}\nolimits} ,v,\) and \({\mathop{\rm w}\nolimits} \) as the vectors in \({\mathbb{R}^n}\) and consider \(c\) as the scalar. Then

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} = {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} \)
  2. \(\left( {{\mathop{\rm u}\nolimits} + {\mathop{\rm v}\nolimits} } \right) \cdot {\mathop{\rm w}\nolimits} = {\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} + {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm w}\nolimits} \)
  3. \(\left( {c{\mathop{\rm u}\nolimits} } \right) \cdot {\mathop{\rm v}\nolimits} = c\left( {{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \right) = {\mathop{\rm u}\nolimits} \cdot \left( {c{\mathop{\rm v}\nolimits} } \right)\)
  4. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} \ge 0\)and \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} = 0\) if and only if \({\mathop{\rm u}\nolimits} = 0\).
02

Compute

\(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \)

It is given that \({\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\).

Evaluate \({\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} \) and \({\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} \) as shown below:

\(\begin{aligned}{c}{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} &= \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right)\\ &= 6\left( 3 \right) + \left( { - 2} \right)\left( { - 1} \right) + 3\left( { - 5} \right)\\ &= 18 + 2 - 15\\ &= 5\end{aligned}\)

\(\begin{aligned}{c}{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} &= \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\\ &= {\left( 6 \right)^2} + {\left( { - 2} \right)^2} + {3^2}\\ &= 36 + 4 + 9\\ &= 49\end{aligned}\)

Compute \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \) as shown below:

\(\begin{aligned}{c}\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} = \frac{5}{{49}}\left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{\frac{{30}}{{49}}}\\{\frac{{ - 10}}{{49}}}\\{\frac{{15}}{{49}}}\end{aligned}} \right)\end{aligned}\)

Thus, the value is \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{\frac{{30}}{{49}}}\\{\frac{{ - 10}}{{49}}}\\{\frac{{15}}{{49}}}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9-12, find a unit vector in the direction of the given vector.

12. \(\left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}3\\{-2}\\1\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{-1}\\3\\{-3}\\4\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\8\\7\\0\end{array}} \right]\)

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

  1. \(\left( {0,1} \right),\left( {1,1} \right),\left( {2,2} \right),\left( {3,2} \right)\)

Show that if an \(n \times n\) matrix satisfies \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\) for all x and y in \({\mathbb{R}^n}\), then \(U\) is an orthogonal matrix.

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\) may be written in the form

\(\begin{aligned}{c}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

Derive the normal equations (7) from the matrix form given in this section.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free