Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question 26: Let U be the matrix in Exercise 25. Find the distance from \({\mathop{\rm b}\nolimits} = \left( {1,1,1,1, - 1, - 1, - 1, - 1} \right)\) to Col U.

Short Answer

Expert verified

The distance from yto \({\mathop{\rm Col}\nolimits} U\) is \(2.1166\).

Step by step solution

01

The Best Approximation Theorem

Consider \(W\) as a subspace of \({\mathbb{R}^n}\), and assume that y as any vector in \({\mathbb{R}^n}\) and \(\widehat {\bf{y}}\) as the orthogonal projection of y onto \(W\). Then, theclosest pointin \(W\) to \({\bf{y}}\) is \(\widehat {\bf{y}}\), such that \(\left\| {{\bf{y}} - \widehat {\bf{y}}} \right\| < \left\| {{\bf{y}} - {\bf{v}}} \right\|\) for every \({\bf{v}}\) in \(W\) distinct from \(\widehat {\bf{y}}\).

02

Determine the distance from b to Col U

The distance from b to Col U is given by \(\left\| {{\bf{b}} - \widehat {\bf{b}}} \right\|\), with \(\widehat {\bf{b}} = U{U^T}{\bf{b}}\) as:

Consider that \(U = \left[ {\begin{array}{*{20}{c}}{ - 6}&{ - 3}&6&1\\{ - 1}&2&1&{ - 6}\\3&6&3&{ - 2}\\6&{ - 3}&6&{ - 1}\\2&{ - 1}&2&3\\{ - 3}&6&3&2\\{ - 2}&{ - 1}&2&{ - 3}\\1&2&1&6\end{array}} \right]\) as in Exercise 25.

Use the MATLAB code to compute \(\widehat {\bf{b}} = U{U^T}{\bf{b}}\) as shown below:

\(\begin{array}{c} > > U = \left[ \begin{array}{l} - 6\,\,\, - 3\,\,\,6\,\,\,1;\, - 1\,\,\,2\,\,\,\,1\,\,\, - 6;\,3\,\,\,6\,\,\,3\,\,\, - 2;\,\,6\,\,\, - 3\,\,\,6\,\,\, - 1;\,\\2\,\,\, - 1\,\,\,2\,\,\,\,3;\,\, - 3\,\,\,\,6\,\,\,3\,\,\,2;\,\, - 2\,\,\, - 1\,\,\,2\,\,\, - 3;1\,\,\,2\,\,\,1\,\,\,6\end{array} \right]\\ > > {\bf{b}} = \left[ {1\,;\,1;\,\,\,1\,;\,\,1\,;\,\, - 1;\,\,\, - 1;\,\, - 1;\,\, - 1} \right]\\ > > \widehat {\bf{b}} = U * U' * {\bf{b}}\end{array}\)

\(\widehat {\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.2}\\{.92}\\{.44}\\1\\{ - .2}\\{ - .44}\\{.6}\\{ - .92}\end{array}} \right]\)

Use the MATLAB code to compute \({\bf{b}} - \widehat {\bf{b}}\) as shown below:

\(\begin{array}{l} > > {\bf{b}} = \left[ {1\,;\,1;\,\,\,1\,;\,\,1\,;\,\, - 1;\,\,\, - 1;\,\, - 1;\,\, - 1} \right]\\ > > \widehat {\bf{b}} = \left[ {.2;\,\,\,.92;\,\,.44;\,\,\,1;\,\, - .2;\,\, - .44;\,\,.6;\, - .92} \right]\\ > > {\bf{b}} - \widehat {\bf{b}}\end{array}\)

\({\bf{b}} - \widehat {\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.8}\\{.08}\\{.56}\\0\\{ - .8}\\{ - .56}\\{ - 1.6}\\{ - .08}\end{array}} \right]\)

Compute \(\left\| {{\bf{b}} - \widehat {\bf{b}}} \right\|\) as shown below:

\(\begin{array}{c}\left\| {{\bf{b}} - \widehat {\bf{b}}} \right\| = \sqrt {{{\left( {.8} \right)}^2} + {{\left( {.08} \right)}^2} + {{\left( {.56} \right)}^2} + \left( 0 \right) + {{\left( { - .8} \right)}^2} + {{\left( { - .56} \right)}^2} + {{\left( { - 1.6} \right)}^2} + {{\left( { - .08} \right)}^2}} \\ = \frac{{\sqrt {112} }}{5}\end{array}\)

It implies that \(2.1166\) to four decimal places.

Thus, the distance from yto \({\mathop{\rm Col}\nolimits} U\) is \(2.1166\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[{\bf{y}}\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

5.\[y = \left[ {\begin{aligned}{ - 1}\\2\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}3\\{ - 1}\\2\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\{ - 2}\end{aligned}} \right]\]

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation that preserves lengths; that is, \(\left\| {T\left( {\bf{x}} \right)} \right\| = \left\| {\bf{x}} \right\|\) for all x in \({\mathbb{R}^n}\).

  1. Show that T also preserves orthogonality; that is, \(T\left( {\bf{x}} \right) \cdot T\left( {\bf{y}} \right) = 0\) whenever \({\bf{x}} \cdot {\bf{y}} = 0\).
  2. Show that the standard matrix of T is an orthogonal matrix.

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

5. \(\left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}7\\{ - 7}\\{ - 4}\\1\end{aligned}} \right)\)

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

3. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{ - {\bf{2}}}\\{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}\\{\bf{2}}&{\bf{5}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{4}}}\\{\bf{2}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free