Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

21. Question: In Exercises 21 and 22, all vectors are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

  1. If z is orthogonal to \({{\mathop{\rm u}\nolimits} _1}\) and to \({{\mathop{\rm u}\nolimits} _2}\) and if \(W = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm u}\nolimits} _1},{{\mathop{\rm u}\nolimits} _2}} \right\}\), then z must be in \({W^ \bot }\).
  2. For each y and each subspace \(W\), the vector \({\mathop{\rm y}\nolimits} - {{\mathop{\rm proj}\nolimits} _W}{\mathop{\rm y}\nolimits} \) is orthogonal to \(W\).
  3. The orthogonal projection \(\widehat {\mathop{\rm y}\nolimits} \) of \({\mathop{\rm y}\nolimits} \) onto a subspace W can sometimes depend on the orthogonal basis for W used to compute \(\widehat {\mathop{\rm y}\nolimits} \).
  4. If y is in a subspace W, then the orthogonal projection of y onto W is y itself.
  5. If the columns of an \(n \times p\) matrix \(U\) are orthonormal, then \(U{U^T}{\mathop{\rm y}\nolimits} \) is the orthogonal projection of y onto the column space of \(U\).

Short Answer

Expert verified
  1. The given statement is true.
  2. The given statement is true.
  3. The given statement is false.
  4. The given statement is true.
  5. The given statement is true.

Step by step solution

01

Check whether the statement is true or false

a)

The vector \({\bf{x}}\) is in \({W^ \bot }\), such that if \({\bf{x}}\) is orthogonal to any vector in the set that spans \(W\).

Also, \({\mathbb{R}^n}\) has a subspace \({W^ \bot }\).

Thus, the given statement (a) is true.

02

Check whether the statement is true or false

b)

The Orthogonal Decomposition theoremstates that, suppose that \(W\) is a subspace of \({\mathbb{R}^n}\). Then each \({\bf{y}}\) in \({\mathbb{R}^n}\) can be expressed uniquely in the form:

\({\bf{y}} = \widehat {\bf{y}} + {\bf{z}}\) … (1)

With \(\widehat {\bf{y}}\) is in \(W\) and \({\bf{z}}\) is in \({W^ \bot }\). In particular, when \(\left\{ {{{\mathop{\rm u}\nolimits} _1}, \ldots ,{{\mathop{\rm u}\nolimits} _p}} \right\}\) is anorthogonal basis of \(W\), then;

\(\widehat {\bf{y}} = \frac{{{\mathop{\rm y}\nolimits} \cdot {{\mathop{\rm u}\nolimits} _1}}}{{{{\mathop{\rm u}\nolimits} _1} \cdot {{\mathop{\rm u}\nolimits} _1}}}{{\mathop{\rm u}\nolimits} _1} + \ldots + \frac{{{\mathop{\rm y}\nolimits} \cdot {{\mathop{\rm u}\nolimits} _p}}}{{{{\mathop{\rm u}\nolimits} _p} \cdot {{\mathop{\rm u}\nolimits} _p}}}{{\mathop{\rm u}\nolimits} _p}\) … (2)

And, \({\bf{z}} = {\bf{y}} - \widehat {\bf{y}}\).

Thus, the given statement (b) is true.

03

Check whether the statement is true or false

c)

It is observed from the uniqueness of the decomposition \({\mathop{\rm y}\nolimits} = \widehat {\mathop{\rm y}\nolimits} + {\mathop{\rm z}\nolimits} \) demonstrates that theorthogonal projection \(\widehat {\mathop{\rm y}\nolimits} \)depends only on \(W\) but not on the particular basis used in \(\widehat {\mathop{\rm y}\nolimits} = \frac{{{\mathop{\rm y}\nolimits} \cdot {{\mathop{\rm u}\nolimits} _1}}}{{{{\mathop{\rm u}\nolimits} _1} \cdot {{\mathop{\rm u}\nolimits} _1}}}{{\mathop{\rm u}\nolimits} _1} + \ldots + \frac{{{\mathop{\rm y}\nolimits} \cdot {{\mathop{\rm u}\nolimits} _p}}}{{{{\mathop{\rm u}\nolimits} _p} \cdot {{\mathop{\rm u}\nolimits} _p}}}{{\mathop{\rm u}\nolimits} _p}\).

Thus, the given statement (c) is false.

04

Check whether the statement is true or false

d)

When \({\bf{y}}\) is in \(W = {\mathop{\rm Span}\nolimits} \left\{ {{{\bf{u}}_1}, \ldots ,{{\bf{u}}_p}} \right\}\), then \({{\mathop{\rm proj}\nolimits} _W}{\bf{y}} = {\bf{y}}\).

Thus, the given statement (d) is true.

05

Check whether the statement is true or false

e)

Theorem 4 holds for column space \(W\) of \(U\) since the columns of \(U\) are linearly independent and therefore, constitute a basis for \(W\).

Thus, the given statement (e) is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}1\\{ - 2}\\1\end{align}} \right]\), \(\left[ {\begin{align}0\\1\\2\end{align}} \right]\), \(\left[ {\begin{align}{ - 5}\\{ - 2}\\1\end{align}} \right]\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

Exercises 13 and 14, the columns of \(Q\) were obtained by applying the Gram Schmidt process to the columns of \(A\). Find anupper triangular matrix \(R\) such that \(A = QR\). Check your work.

14.\(A = \left( {\begin{aligned}{{}{r}}{ - 2}&3\\5&7\\2&{ - 2}\\4&6\end{aligned}} \right)\), \(Q = \left( {\begin{aligned}{{}{r}}{\frac{{ - 2}}{7}}&{\frac{5}{7}}\\{\frac{5}{7}}&{\frac{2}{7}}\\{\frac{2}{7}}&{\frac{{ - 4}}{7}}\\{\frac{4}{7}}&{\frac{2}{7}}\end{aligned}} \right)\)

To measure the take-off performance of an airplane, the horizontal position of the plane was measured every second, from \(t = 0\) to \(t = 12\). The positions (in feet) were: 0, 8.8, 29.9, 62.0, 104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7, 686.8, 809.2.

a. Find the least-squares cubic curve \(y = {\beta _0} + {\beta _1}t + {\beta _2}{t^2} + {\beta _3}{t^3}\) for these data.

b. Use the result of part (a) to estimate the velocity of the plane when \(t = 4.5\) seconds.

A Householder matrix, or an elementary reflector, has the form \(Q = I - 2{\bf{u}}{{\bf{u}}^T}\) where u is a unit vector. (See Exercise 13 in the Supplementary Exercise for Chapter 2.) Show that Q is an orthogonal matrix. (Elementary reflectors are often used in computer programs to produce a QR factorization of a matrix A. If A has linearly independent columns, then left-multiplication by a sequence of elementary reflectors can produce an upper triangular matrix.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free