Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question 20: Let \({{\mathop{\rm u}\nolimits} _1}\) and \({{\mathop{\rm u}\nolimits} _2}\) be as in Exercise 19, and let \({{\mathop{\rm u}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right)\). It can be shown that \({{\mathop{\rm u}\nolimits} _4}\) is not in the subspace \(W\) spanned by \({{\mathop{\rm u}\nolimits} _1}\), and \({{\mathop{\rm u}\nolimits} _2}\). Use this fact to construct a nonzero vector v in \({\mathbb{R}^3}\) that is orthogonal to \({{\mathop{\rm u}\nolimits} _1}\), and \({{\mathop{\rm u}\nolimits} _2}\).

Short Answer

Expert verified

The vector \({\bf{v}}\) is \({\bf{v}} = \left( {\begin{array}{*{20}{c}}0\\{\frac{4}{5}}\\{\frac{2}{5}}\end{array}} \right)\).

Step by step solution

01

The Orthogonal Decomposition Theorem

Suppose that \(W\) is a subspace of \({\mathbb{R}^n}\). Then each \({\bf{y}}\) in \({\mathbb{R}^n}\) can be expressed uniquely in the form

\({\bf{y}} = \widehat {\bf{y}} + {\bf{z}}\) … (1)

With \(\widehat {\bf{y}}\) is in \(W\) and \({\bf{z}}\) is in \({W^ \bot }\). In particular, when \(\left\{ {{{\mathop{\rm u}\nolimits} _1}, \ldots ,{{\mathop{\rm u}\nolimits} _p}} \right\}\) is anorthogonal basis of \(W\), then;

\(\widehat {\bf{y}} = \frac{{{\mathop{\rm y}\nolimits} \cdot {{\mathop{\rm u}\nolimits} _1}}}{{{{\mathop{\rm u}\nolimits} _1} \cdot {{\mathop{\rm u}\nolimits} _1}}}{{\mathop{\rm u}\nolimits} _1} + \ldots + \frac{{{\mathop{\rm y}\nolimits} \cdot {{\mathop{\rm u}\nolimits} _p}}}{{{{\mathop{\rm u}\nolimits} _p} \cdot {{\mathop{\rm u}\nolimits} _p}}}{{\mathop{\rm u}\nolimits} _p}\) … (2)

And, \({\bf{z}} = {\bf{y}} - \widehat {\bf{y}}\).

02

Construct a nonzero vector v in \({\mathbb{R}^3}\)

Consider that \({{\bf{u}}_1} = \left( {\begin{array}{*{20}{c}}1\\1\\{ - 2}\end{array}} \right),{\rm{ }}{{\bf{u}}_2} = \left( {\begin{array}{*{20}{c}}5\\{ - 1}\\2\end{array}} \right)\), and \({{\bf{u}}_3} = \left( {\begin{array}{*{20}{c}}0\\0\\1\end{array}} \right)\). Let, \({{\bf{u}}_4} = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right)\).

According to the Orthogonal Decomposition Theorem, the sum of two vectors in \(W = {\mathop{\rm Span}\nolimits} \left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\) is \({{\bf{u}}_4}\) and a vectorv orthogonal to \(W\).

Construct a nonzero vector \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^3}\) as shown below:

\(\begin{array}{c}{\bf{v}} = {{\bf{u}}_4} - {{\mathop{\rm proj}\nolimits} _W}{{\bf{u}}_4}\\ = {{\bf{u}}_4} - \left( {\frac{{{\bf{y}} \cdot {{\bf{u}}_1}}}{{{{\bf{u}}_1} \cdot {{\bf{u}}_1}}}{{\bf{u}}_1} + \frac{{{\bf{y}} \cdot {{\bf{u}}_2}}}{{{{\bf{u}}_2} \cdot {{\bf{u}}_2}}}{{\bf{u}}_2}} \right)\\ = {{\bf{u}}_4} - \left( {\frac{1}{6}{{\bf{u}}_1} - \frac{1}{{30}}{{\bf{u}}_2}} \right)\\ = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right) - \left( {\frac{1}{6}\left( {\begin{array}{*{20}{c}}1\\1\\{ - 2}\end{array}} \right) - \frac{1}{{30}}\left( {\begin{array}{*{20}{c}}5\\{ - 1}\\2\end{array}} \right)} \right)\\ = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right) - \left( {\left( {\begin{array}{*{20}{c}}{\frac{1}{6}}\\{\frac{1}{6}}\\{ - \frac{2}{6}}\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{\frac{5}{{30}}}\\{ - \frac{1}{{30}}}\\{\frac{2}{{30}}}\end{array}} \right)} \right)\\ = \left( {\begin{array}{*{20}{c}}0\\1\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}0\\{\frac{1}{5}}\\{ - \frac{2}{5}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}0\\{\frac{4}{5}}\\{\frac{2}{5}}\end{array}} \right)\end{array}\)

Therefore, each multiple of the vector \({\bf{v}}\) is also in \({W^ \bot }\).

Thus, the nonzero vector \({\bf{v}}\) is \({\bf{v}} = \left( {\begin{array}{*{20}{c}}0\\{\frac{4}{5}}\\{\frac{2}{5}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)

[M] Let \({f_{\bf{4}}}\) and \({f_{\bf{5}}}\) be the fourth-order and fifth order Fourier approximations in \(C\left[ {{\bf{0}},{\bf{2}}\pi } \right]\) to the square wave function in Exercise 10. Produce separate graphs of \({f_{\bf{4}}}\) and \({f_{\bf{5}}}\) on the interval \(\left[ {{\bf{0}},{\bf{2}}\pi } \right]\), and produce graph of \({f_{\bf{5}}}\) on \(\left[ { - {\bf{2}}\pi ,{\bf{2}}\pi } \right]\).

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[y\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

6.\[{\rm{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\]

In Exercises 9-12, find a unit vector in the direction of the given vector.

9. \(\left( {\begin{aligned}{*{20}{c}}{ - 30}\\{40}\end{aligned}} \right)\)

A healthy child’s systolic blood pressure (in millimetres of mercury) and weight (in pounds) are approximately related by the equation

\({\beta _0} + {\beta _1}\ln w = p\)

Use the following experimental data to estimate the systolic blood pressure of healthy child weighing 100 pounds.

\(\begin{array} w&\\ & {44}&{61}&{81}&{113}&{131} \\ \hline {\ln w}&\\vline & {3.78}&{4.11}&{4.39}&{4.73}&{4.88} \\ \hline p&\\vline & {91}&{98}&{103}&{110}&{112} \end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free