Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Let \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}}} \right\}\) be an orthogonal set of nonzero vectors, and let \({c_{\bf{1}}}\), \({c_{\bf{2}}}\) be any nonzero scalars. Show that \(\left\{ {{c_{\bf{1}}}{{\bf{v}}_{\bf{1}}},{c_{\bf{2}}}{{\bf{v}}_{\bf{2}}}} \right\}\) is also an orthogonal set. Since orthgonality of a set is defined in terms of pairs of vectors, this shows that if the vectors in an orthogonal set are normalized, the new set will still be orthogonal.

Short Answer

Expert verified

It is proved that the set \(\left\{ {{c_1}{{\bf{v}}_1},{c_2}{{\bf{v}}_2}} \right\}\) is an orthogonal set.

Step by step solution

01

Write the relation for the vectors \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}}} \right\}\)

Since the set \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2}} \right\}\) is an orthogonal set of nonzero vectors, so \({{\bf{v}}_1} \cdot {{\bf{v}}_2} = 0\).

02

Check the orthogonality for \(\left\{ {{c_{\bf{1}}}{{\bf{v}}_{\bf{1}}},{c_{\bf{2}}}{{\bf{v}}_{\bf{2}}}} \right\}\)

As \({c_1}\) and \({c_2}\) are non-zero scalars, then the dot product for the set of vectors \(\left\{ {{c_1}{{\bf{v}}_1},{c_2}{{\bf{v}}_2}} \right\}\) is shown below:

\(\begin{array}{c}\left( {{c_1}{{\bf{v}}_1}} \right) \cdot \left( {{c_2}{{\bf{v}}_2}} \right) = {c_1}\left( {{{\bf{v}}_1} \cdot \left( {{c_2}{{\bf{v}}_2}} \right)} \right)\\ = {c_1}{c_2}\left( {{{\bf{v}}_1} \cdot {{\bf{v}}_2}} \right)\\ = {c_1}{c_2}\left( 0 \right)\\ = 0\end{array}\)

Therefore, the set \(\left\{ {{c_1}{{\bf{v}}_1},{c_2}{{\bf{v}}_2}} \right\}\) is an orthogonal set.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 9-12, find a unit vector in the direction of the given vector.

12. \(\left( {\begin{array}{*{20}{c}}{\frac{8}{3}}\\2\end{array}} \right)\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,{\rm{ }}{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}\)

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

1. \(A = \left[ {\begin{aligned}{{}{}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{1}}}&{\bf{3}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{4}}\\{\bf{1}}\\{\bf{2}}\end{aligned}} \right]\)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}3\\{-2}\\1\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{-1}\\3\\{-3}\\4\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\8\\7\\0\end{array}} \right]\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free