Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5 and 6, describe all least squares solutions of the equation \(A{\bf{x}} = {\bf{b}}\).

5. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{1}}\\{\bf{3}}\\{\bf{8}}\\{\bf{2}}\end{aligned}} \right)\)

Short Answer

Expert verified

The solution is \({\bf{\hat x}} = \left( {\begin{aligned}{{}{}}5\\{ - 3}\\0\end{aligned}} \right) + {x_3}\left( {\begin{aligned}{{}{}}{ - 1}\\1\\1\end{aligned}} \right)\).

Step by step solution

01

Find the products \({A^T}A\) and \({A^T}{\bf{b}}\)

Find the product \({A^T}A\).

\(\begin{aligned}{}{A^T}A & = \left( {\begin{aligned}{{}{}}1&1&1&1\\1&1&0&0\\0&0&1&1\end{aligned}} \right)\left( {\begin{aligned}{{}{}}1&1&0\\1&1&0\\1&0&1\\1&0&1\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}4&2&2\\2&2&0\\2&0&2\end{aligned}} \right)\end{aligned}\)

Find the product \({A^T}{\bf{b}}\).

\(\begin{aligned}{}{A^T}{\bf{b}}& = \left( {\begin{aligned}{{}{}}1&1&1&1\\1&1&0&0\\0&0&1&1\end{aligned}} \right)\left( {\begin{aligned}{{}{}}1\\3\\8\\2\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{14}\\4\\{10}\end{aligned}} \right)\end{aligned}\)

02

Write the augmented matrix

The augmented matrix:

\(\begin{aligned}{}\left( {\begin{aligned}{{}{}}{{A^T}A}&{{A^T}{\bf{b}}}\end{aligned}} \right) & = \left( {\begin{aligned}{{}{}}4&2&2&{14}\\2&2&0&4\\2&0&2&{10}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}1&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{7}{2}}\\2&2&0&4\\2&0&2&{10}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to \frac{{{R_1}}}{4}} \right)\\ & = \left( {\begin{aligned}{{}{}}1&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{7}{2}}\\0&1&{ - 1}&{ - 3}\\0&{ - 1}&1&3\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to {R_2} - 2{R_1}} \right)\\ & = \left( {\begin{aligned}{{}{}}1&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{7}{2}}\\0&1&{ - 1}&{ - 3}\\0&0&0&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_3} \to {R_3} + {R_2}} \right)\\ & = \left( {\begin{aligned}{{}{}}1&0&1&5\\0&1&{ - 1}&{ - 3}\\0&0&0&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to {R_1} - \frac{1}{2}{R_2}} \right)\end{aligned}\)

03

Find the solution \({\bf{\hat x}}\)

Using the augmented matrix the least square solution is:

\({\bf{\hat x}} = \left( {\begin{aligned}{{}{}}5\\{ - 3}\\0\end{aligned}} \right) + {x_3}\left( {\begin{aligned}{{}{}}{ - 1}\\1\\1\end{aligned}} \right)\)

Thus, the least square solution is \({\bf{\hat x}} = \left( {\begin{aligned}{{}{}}5\\{ - 3}\\0\end{aligned}} \right) + {x_3}\left( {\begin{aligned}{{}{}}{ - 1}\\1\\1\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,{\rm{ }}{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}\)

Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

10. \(\left( {\begin{aligned}{{}{}}{ - 1} & 6 & 6 \\ 3 & { - 8}&3\\1&{ - 2}&6\\1&{ - 4}&{ - 3}\end{aligned}} \right)\)

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

4. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{3}}\\{\bf{1}}&{ - {\bf{1}}}\\{\bf{1}}&{\bf{1}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{5}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right)\)

A certain experiment produce the data \(\left( {1,7.9} \right),\left( {2,5.4} \right)\) and \(\left( {3, - .9} \right)\). Describe the model that produces a least-squares fit of these points by a function of the form

\(y = A\cos x + B\sin x\)

Question: In Exercises 9-12, find (a) the orthogonal projection of b onto \({\bf{Col}}A\) and (b) a least-squares solution of \(A{\bf{x}} = {\bf{b}}\).

11. \(A = \left( {\begin{aligned}{{}{}}{\bf{4}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{ - {\bf{5}}}&{\bf{1}}\\{\bf{6}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{ - {\bf{1}}}&{ - {\bf{5}}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{9}}\\{\bf{0}}\\{\bf{0}}\\{\bf{0}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free