Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

5. \(\left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}7\\{ - 7}\\{ - 4}\\1\end{aligned}} \right)\)

Short Answer

Expert verified

\(\left\{ {\left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}5\\1\\{ - 4}\\{ - 1}\end{aligned}} \right)} \right\}\) is an orthogonal basis for \(W\).

Step by step solution

01

The Gram-Schmidt process

With abasis\(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)for a nonzero subspace \(W\) of \({\mathbb{R}^n}\), the expressionis shown below:

\(\begin{aligned}{}{{\bf{v}}_1} &= {{\bf{x}}_1}\\{{\bf{v}}_2} &= {{\bf{x}}_2} - \frac{{{{\bf{x}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_2}\\ \vdots \\{{\bf{v}}_p} &= \frac{{{{\bf{x}}_p} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_p} - \frac{{{{\bf{x}}_p} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_p} - \ldots - \frac{{{{\bf{x}}_{p - 1}} \cdot {{\bf{v}}_{p - 1}}}}{{{{\bf{v}}_{p - 1}} \cdot {{\bf{v}}_{p - 1}}}}{{\bf{v}}_{p - 1}}\end{aligned}\)

Therefore, theorthogonal basisfor \(W\) is \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\). Furthermore,

\({\mathop{\rm Span}\nolimits} \left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}} \right\} = {\mathop{\rm Span}\nolimits} \left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}} \right\}\) for \(1 \le k \le p\).

02

Use a Gram-Schmidt process to produce an orthogonal basis for W

Let \({{\bf{x}}_1} = \left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right),{{\bf{x}}_2} = \left( {\begin{aligned}{{}{}}7\\{ - 7}\\{ - 4}\\1\end{aligned}} \right)\).

Use a Gram-Schmidt process and let \({{\bf{x}}_1} = {{\bf{v}}_1}\) to calculate \({{\bf{v}}_2}\) as shown below:

\(\begin{aligned}{}{{\bf{v}}_2} &= {{\bf{x}}_2} - \frac{{{{\bf{x}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_2}\\ &= {{\bf{x}}_2} - \frac{{36}}{{18}}{{\bf{v}}_1}\\ &= {{\bf{x}}_2} - 2{{\bf{v}}_1}\\ &= \left( {\begin{aligned}{{}{}}7\\{ - 7}\\{ - 4}\\1\end{aligned}} \right) - 2\left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}{7 - 2}\\{ - 7 + 8}\\{ - 4 + 0}\\{1 - 2}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}{}}5\\1\\{ - 4}\\{ - 1}\end{aligned}} \right)\end{aligned}\)

Hence, an orthogonal basis for \(W\) is an \(\left\{ {\left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}5\\1\\{ - 4}\\{ - 1}\end{aligned}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

Question: In Exercises 1 and 2, you may assume that\(\left\{ {{{\bf{u}}_{\bf{1}}},...,{{\bf{u}}_{\bf{4}}}} \right\}\)is an orthogonal basis for\({\mathbb{R}^{\bf{4}}}\).

2.\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{2}}}\\{\bf{1}}\\{ - {\bf{1}}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{3}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\\{ - {\bf{1}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{4}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({\bf{x}} = \left[ {\begin{aligned}{\bf{4}}\\{\bf{5}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right]\)

Write v as the sum of two vectors, one in\({\bf{Span}}\left\{ {{{\bf{u}}_1}} \right\}\)and the other in\({\bf{Span}}\left\{ {{{\bf{u}}_2},{{\bf{u}}_3},{{\bf{u}}_{\bf{4}}}} \right\}\).

Suppose \(A = QR\), where \(Q\) is \(m \times n\) and R is \(n \times n\). Showthat if the columns of \(A\) are linearly independent, then \(R\) mustbe invertible.

Suppose \(A = QR\) is a \(QR\) factorization of an \(m \times n\) matrix

A (with linearly independent columns). Partition \(A\) as \(\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right]\), where \({A_1}\) has \(p\) columns. Show how to obtain a \(QR\) factorization of \({A_1}\), and explain why your factorization has the appropriate properties.

Let \(U\) be an \(n \times n\) orthogonal matrix. Show that if \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_n}} \right\}\) is an orthonormal basis for \({\mathbb{R}^n}\), then so is \(\left\{ {U{{\bf{v}}_1}, \ldots ,U{{\bf{v}}_n}} \right\}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free