Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)

Short Answer

Expert verified

The Cauchy-Schwartz inequality is true.

Step by step solution

01

Find the values \(\left\| {\bf{x}} \right\|\) and \(\left\| {\bf{y}} \right\|\)

Find the value of \(\left\| {\bf{x}} \right\|\).

\(\begin{aligned}\left\| {\bf{x}} \right\| &= \sqrt {\left\langle {{\bf{x}},{\bf{x}}} \right\rangle } \\ &= \sqrt {\left\langle {\left( {3, - 2} \right),\left( { - 2,1} \right)} \right\rangle } \\ &= \sqrt {4\left( 3 \right)\left( 3 \right) + 5\left( { - 2} \right)\left( { - 2} \right)} \\ &= \sqrt {36 + 20} \\ &= \sqrt {56} \end{aligned}\)

Thus, the value of \(\left\| {\bf{x}} \right\|\) is \(\sqrt {56} \).

Find the value of \(\left\| {\bf{y}} \right\|\).

\(\begin{aligned}\left\| {\bf{y}} \right\| &= \sqrt {\left\langle {{\bf{y}},{\bf{y}}} \right\rangle } \\ &= \sqrt {\left\langle {\left( { - 2,1} \right),\left( { - 2,1} \right)} \right\rangle } \\ &= \sqrt {4\left( { - 2} \right)\left( { - 2} \right) + 5\left( 1 \right)\left( 1 \right)} \\ &= \sqrt {21} \end{aligned}\)

Thus, the value of \(\left\| {\bf{y}} \right\|\) is \(\sqrt {21} \).

02

Find the inner product and \({\left\| {\bf{x}} \right\|^{\bf{2}}}{\left\| {\bf{y}} \right\|^{\bf{2}}}\)

The inner product \(\left\langle {{\bf{x}},{\bf{y}}} \right\rangle \)can be calculated as follows:

\(\begin{aligned}\left\langle {{\bf{x}},{\bf{y}}} \right\rangle &= \left\langle {\left( {3, - 2} \right),\left( { - 2,1} \right)} \right\rangle \\ &= 4\left( 3 \right)\left( { - 2} \right) + 5\left( { - 2} \right)\left( 1 \right)\\ &= - 34\end{aligned}\)

Find the value of \({\left\| {\bf{x}} \right\|^2}{\left\| {\bf{y}} \right\|^2}\).

\(\begin{aligned}{\left\| {\bf{x}} \right\|^2}{\left\| {\bf{y}} \right\|^2} &= 56 \times 21\\ &= 1176\end{aligned}\)

03

Check for Cauchy-Schwartz inequality

By the Cauchy-Schwartz inequality:

\(\begin{aligned}\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right| \le \left\| {\bf{x}} \right\|\left\| {\bf{y}} \right\|\\{\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^2} \le {\left\| {\bf{x}} \right\|^2}{\left\| {\bf{y}} \right\|^2}\\1156 < 1176\end{aligned}\)

Thus, the Cauchy-Schwartz inequality is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

6. \(\left( {\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm x}\nolimits} }}} \right){\mathop{\rm x}\nolimits} \)

Compute the least-squares error associated with the least square solution found in Exercise 4.

Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

3.\[y = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{4}}\\{\bf{3}}\end{aligned}} \right]\],\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right]\)

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

  1. \(\left( {\begin{aligned}{{}{}}3\\0\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}{}}8\\5\\{ - 6}\end{aligned}} \right)\)

[M] Let \({f_{\bf{4}}}\) and \({f_{\bf{5}}}\) be the fourth-order and fifth order Fourier approximations in \(C\left[ {{\bf{0}},{\bf{2}}\pi } \right]\) to the square wave function in Exercise 10. Produce separate graphs of \({f_{\bf{4}}}\) and \({f_{\bf{5}}}\) on the interval \(\left[ {{\bf{0}},{\bf{2}}\pi } \right]\), and produce graph of \({f_{\bf{5}}}\) on \(\left[ { - {\bf{2}}\pi ,{\bf{2}}\pi } \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free