Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

2. \(\left( {\begin{aligned}{{}{}}0\\4\\2\end{aligned}} \right),\left( {\begin{aligned}{{}{}}5\\6\\{ - 7}\end{aligned}} \right)\)

Short Answer

Expert verified

\(\left\{ {\left( {\begin{aligned}{{}{}}0\\4\\2\end{aligned}} \right),\left( {\begin{aligned}{{}{}}5\\4\\{ - 8}\end{aligned}} \right)} \right\}\) is an orthogonal basis for \(W\).

Step by step solution

01

The Gram-Schmidt process

With abasis\(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)for a nonzero subspace \(W\) of \({\mathbb{R}^n}\), the expressionis shown below:

\(\begin{aligned}{}{{\bf{v}}_1} &= {{\bf{x}}_1}\\{{\bf{v}}_2} & = {{\bf{x}}_2} - \frac{{{{\bf{x}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_2}\\ \vdots \\{{\bf{v}}_p} & = \frac{{{{\bf{x}}_p} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_p} - \frac{{{{\bf{x}}_p} \cdot {{\bf{v}}_2}}}{{{{\bf{v}}_2} \cdot {{\bf{v}}_2}}}{{\bf{v}}_p} - \ldots - \frac{{{{\bf{x}}_{p - 1}} \cdot {{\bf{v}}_{p - 1}}}}{{{{\bf{v}}_{p - 1}} \cdot {{\bf{v}}_{p - 1}}}}{{\bf{v}}_{p - 1}}\end{aligned}\)

Therefore, theorthogonal basisfor \(W\) is \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\). Furthermore,

\({\mathop{\rm Span}\nolimits} \left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}} \right\} = {\mathop{\rm Span}\nolimits} \left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}} \right\}\) for \(1 \le k \le p\).

02

Use a Gram-Schmidt process to produce an orthogonal basis for W

Let \({{\bf{x}}_1} = \left( {\begin{aligned}{{}{}}0\\4\\2\end{aligned}} \right),{{\bf{x}}_2} = \left( {\begin{aligned}{{}{}}5\\6\\{ - 7}\end{aligned}} \right)\).

Use a Gram-Schmidt process and let \({{\bf{x}}_1} = {{\bf{v}}_1}\) to calculate \({{\bf{v}}_2}\) as shown below:

\(\begin{aligned}{}{{\bf{v}}_2} &= {{\bf{x}}_2} - \frac{{{{\bf{x}}_2} \cdot {{\bf{v}}_1}}}{{{{\bf{v}}_1} \cdot {{\bf{v}}_1}}}{{\bf{v}}_2}\\ & = {{\bf{x}}_2} - \frac{{10}}{{20}}{{\bf{v}}_1}\\ & = {{\bf{x}}_2} - \frac{1}{2}{{\bf{v}}_1}\\ & = \left( {\begin{aligned}{{}{}}5\\6\\{ - 7}\end{aligned}} \right) - \frac{1}{2}\left( {\begin{aligned}{{}{}}0\\4\\2\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{5 - 0}\\{6 - 2}\\{ - 7 - 1}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}5\\4\\{ - 8}\end{aligned}} \right)\end{aligned}\)

Thus, \(\left\{ {\left( {\begin{aligned}{{}{}}0\\4\\2\end{aligned}} \right),\left( {\begin{aligned}{{}{}}5\\4\\{ - 8}\end{aligned}} \right)} \right\}\) is an orthogonal basis for \(W\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free