Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{2}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}\\{\bf{7}}\end{aligned}} \right)\)

Short Answer

Expert verified

The affine combination is \({\bf{y}} = - 5{{\bf{v}}_1} + 2{{\bf{v}}_2} + 4{{\bf{v}}_3}\).

Step by step solution

01

Find the translated point

Write the translated points as shown below:

\({{\bf{v}}_2} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\1\end{aligned}} \right)\)

\({{\bf{v}}_3} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}2\\1\end{aligned}} \right)\)

\({\bf{y}} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right)\)

Write the equation by using the translated matrix as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} = {c_2}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + {c_3}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\\\left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right) = {c_2}\left( {\begin{aligned}{*{20}{c}}{ - 2}\\1\end{aligned}} \right) + {c_3}\left( {\begin{aligned}{*{20}{c}}2\\1\end{aligned}} \right)\end{aligned}\)

02

Write the augmented matrix

The augmented matrix can be written as shown below:

\(M = \left( {\begin{aligned}{*{20}{c}}{ - 2}&2&4\\1&1&6\end{aligned}} \right)\)

Row reduce the augmented matrix as shown below:

\(\begin{aligned}{c}M = \left( {\begin{aligned}{*{20}{c}}{ - 2}&2&4\\1&1&6\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&{ - 1}&{ - 2}\\1&1&6\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to - \frac{1}{2}{R_1}} \right)\,\\ = \left( {\begin{aligned}{*{20}{c}}1&{ - 1}&{ - 2}\\0&2&8\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to {R_2} - {R_1}} \right)\,\\ = \left( {\begin{aligned}{*{20}{c}}1&{ - 1}&{ - 2}\\0&1&4\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to \frac{1}{2}{R_2}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&2\\0&1&4\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to {R_1} + {R_2}} \right)\end{aligned}\)

03

Write the system of equations

From the augmented matrix, the system of equation is shown below:

\({c_2} = 2\)

And,

\({c_3} = 4\)

Substitute the value in the equation of translated points as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} &= 2\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + 4\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\\{\bf{y}} &= {{\bf{v}}_1} + 2{{\bf{v}}_2} - 2{{\bf{v}}_1} + 4{{\bf{v}}_3} - 4{{\bf{v}}_1}\\{\bf{y}} &= - 5{{\bf{v}}_1} + 2{{\bf{v}}_2} + 4{{\bf{v}}_3}\end{aligned}\)

So, the vector \({\bf{y}}\) is \( - 5{{\bf{v}}_1} + 2{{\bf{v}}_2} + 4{{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

4. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{3}}\\{\bf{1}}&{ - {\bf{1}}}\\{\bf{1}}&{\bf{1}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{5}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right)\)

Let \(X\) be the design matrix in Example 2 corresponding to a least-square fit of parabola to data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\). Suppose \({x_1}\), \({x_2}\) and \({x_3}\) are distinct. Explain why there is only one parabola that best, in a least-square sense. (See Exercise 5.)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}3\\{-2}\\1\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{-1}\\3\\{-3}\\4\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\8\\7\\0\end{array}} \right]\)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align} 2\\{-5}\\{-3}\end{align}} \right]\), \(\left[ {\begin{align}0\\0\\0\end{align}} \right]\), \(\left[ {\begin{align} 4\\{ - 2}\\6\end{align}} \right]\)

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

5. \(\left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}7\\{ - 7}\\{ - 4}\\1\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free