Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

2. \(A = \left( {\begin{aligned}{{}{}}{\bf{2}}&{\bf{1}}\\{ - {\bf{2}}}&{\bf{0}}\\{\bf{2}} {\bf{3}}\end{aligned}} \right)\), \(b = \left( {\begin{aligned}{{}{}}{ - {\bf{5}}}\\{\bf{8}}\\{\bf{1}}\end{aligned}} \right)\)

Short Answer

Expert verified

(a) \(\left( {\begin{aligned}{{}{}}{12}&8\\8&{10}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) = \left( {\begin{aligned}{{}{}}{ - 24}\\{ - 2}\end{aligned}} \right)\)

(b)\(\left( {\begin{aligned}{{}{}}{ - 4}\\3\end{aligned}} \right)\)

Step by step solution

01

Find the products \({A^T}A\) and \({A^T}{\bf{b}}\) (a)

Find the product \({A^T}A\).

\(\begin{aligned}{}{A^T}A & = \left( {\begin{aligned}{{}{}}2&{ - 2}&2\\1&0&3\end{aligned}} \right)\left( {\begin{aligned}{{}{}}2&1\\{ - 2}&0\\2&3\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{12}&8\\8&{10}\end{aligned}} \right)\end{aligned}\)

Find the product \({A^T}{\bf{b}}\).

\(\begin{aligned}{}{A^T}{\bf{b}} & = \left( {\begin{aligned}{{}{}}2&{ - 2}&2\\1&0&3\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{ - 5}\\8\\1\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{ - 24}\\{ - 2}\end{aligned}} \right)\end{aligned}\)

02

Find the solution by constructing the normal equations

The normal equations can be written as:

\(\begin{aligned}{}\left( {{A^T}A} \right){\bf{x}} & = {A^T}{\bf{b}}\\\left( {\begin{aligned}{{}{}}{12}&8\\8&{10}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}{{x_1}}\\{{x_2}}\end{aligned}} \right) & = \left( {\begin{aligned}{{}{}}{ - 24}\\{ - 2}\end{aligned}} \right)\end{aligned}\)

03

(b)Step 3: Find the component \({\bf{\hat x}}\)

The component \({\bf{\hat x}}\) can be calculated as:

\(\begin{aligned}{}{\bf{\hat x}} & = {\left( {{A^T}A} \right)^{ - 1}}\left( {{A^T}{\bf{b}}} \right)\\ & = {\left( {\begin{aligned}{{}{}}{12}&8\\8&{10}\end{aligned}} \right)^{ - 1}}\left( {\begin{aligned}{{}{}}{ - 24}\\{ - 2}\end{aligned}} \right)\\ & = \frac{1}{{56}}\left( {\begin{aligned}{{}{}}{ - 224}\\{168}\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}{ - 4}\\3\end{aligned}} \right)\end{aligned}\)

The \({\bf{\hat x}}\) component is \(\left( {\begin{aligned}{{}{}}{ - 4}\\3\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \(A = QR\) is a \(QR\) factorization of an \(m \times n\) matrix

A (with linearly independent columns). Partition \(A\) as \(\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right]\), where \({A_1}\) has \(p\) columns. Show how to obtain a \(QR\) factorization of \({A_1}\), and explain why your factorization has the appropriate properties.

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

4. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{3}}\\{\bf{1}}&{ - {\bf{1}}}\\{\bf{1}}&{\bf{1}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{5}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right)\)

In Exercises 13 and 14, find the best approximation to\[{\bf{z}}\]by vectors of the form\[{c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2}\].

13.\[z = \left[ {\begin{aligned}3\\{ - 7}\\2\\3\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}2\\{ - 1}\\{ - 3}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\1\\0\\{ - 1}\end{aligned}} \right]\]

In Exercises 11 and 12, find the closest point to \[{\bf{y}}\] in the subspace \[W\] spanned by \[{{\bf{v}}_1}\], and \[{{\bf{v}}_2}\].

12. \[y = \left[ {\begin{aligned}3\\{ - 1}\\1\\{13}\end{aligned}} \right]\], \[{{\bf{v}}_1} = \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right]\], \[{{\bf{v}}_2} = \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\]

In Exercises 5-14, the space is \(C\left[ {0,2\pi } \right]\) with inner product (6).

7. Show that \({\left\| {\cos kt} \right\|^2} = \pi \) and \({\left\| {\sin kt} \right\|^2} = \pi \) for \(k > 0\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free