Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a vector \({\bf{y}}\) is orthogonal to vectors \({\bf{u}}\) and \({\bf{v}}\). Show that \({\rm{y}}\) is orthogonal to the vector \({\bf{u}} + {\bf{v}}\).

Short Answer

Expert verified

It is verified that \({\bf{y}}\)is orthogonal to vector \({\bf{u}} + {\bf{v}}\).

Step by step solution

01

Definition of Orthogonal sets.

The two vectors \({\bf{u}}{\rm{ and }}{\bf{v}}\) are Orthogonal if:

\(\begin{aligned}{l}{\left\| {{\bf{u}} + {\bf{v}}} \right\|^2} = {\left\| {\bf{u}} \right\|^2} + {\left\| {\bf{v}} \right\|^2}\\{\rm{and}}\\{\bf{u}} \cdot {\bf{v}} = 0\end{aligned}\).

02

 Computing the required values.

Since, \({\bf{y}}\) is orthogonal to vectors \({\bf{u}}{\rm{ and }}{\bf{v}}\).

Therefore,

\(\begin{aligned}{l}{\bf{y}} \cdot {\bf{u}} = 0\\{\bf{y}} \cdot {\bf{v}} = 0\end{aligned}\)

Using the inner productrule, we have:

\(\begin{aligned}{c}{\bf{y}} \cdot \left( {{\bf{u}} + {\bf{v}}} \right) &= {\bf{y}} \cdot {\bf{u}} + {\bf{y}} \cdot {\bf{v}}\\ &= 0 + 0\\ &= 0\end{aligned}\).

Hence proved: \({\bf{y}}\)is orthogonal to vector \({\bf{u}} + {\bf{v}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

7.\[y = \left[ {\begin{aligned}1\\3\\5\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\]

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

  1. \(\left( {0,1} \right),\left( {1,1} \right),\left( {2,2} \right),\left( {3,2} \right)\)

A healthy child’s systolic blood pressure (in millimetres of mercury) and weight (in pounds) are approximately related by the equation

\({\beta _0} + {\beta _1}\ln w = p\)

Use the following experimental data to estimate the systolic blood pressure of healthy child weighing 100 pounds.

\(\begin{array} w&\\ & {44}&{61}&{81}&{113}&{131} \\ \hline {\ln w}&\\vline & {3.78}&{4.11}&{4.39}&{4.73}&{4.88} \\ \hline p&\\vline & {91}&{98}&{103}&{110}&{112} \end{array}\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

A simple curve that often makes a good model for the variable costs of a company, a function of the sales level \(x\), has the form \(y = {\beta _1}x + {\beta _2}{x^2} + {\beta _3}{x^3}\). There is no constant term because fixed costs are not included.

a. Give the design matrix and the parameter vector for the linear model that leads to a least-squares fit of the equation above, with data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\).

b. Find the least-squares curve of the form above to fit the data \(\left( {4,1.58} \right),\left( {6,2.08} \right),\left( {8,2.5} \right),\left( {10,2.8} \right),\left( {12,3.1} \right),\left( {14,3.4} \right),\left( {16,3.8} \right)\) and \(\left( {18,4.32} \right)\), with values in thousands. If possible, produce a graph that shows the data points and the graph of the cubic approximation.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free