Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Let \(V\) be the space \(C\left( { - 2,2} \right)\) with the inner product of Example 7. Find an orthogonal basis for the subspace spanned by the polynomials 1, \(t\), and \({t^2}\).

Short Answer

Expert verified

The orthogonal basis is \(\left\{ {1,\,t,\,3{t^2} - 4} \right\}\).

Step by step solution

01

Use the given information

If the pair of vectors\(\left\langle {f,g} \right\rangle \)belong to vector space \(V\) defined in \(C\left( { - 2,2} \right)\), then their inner product is given by \(\left\langle {f,g} \right\rangle = \int_{ - 2}^2 {f\left( t \right)g\left( t \right)dt} \).

It is given that \(1,\,t,\,{t^2}\) are orthogonal, then \(\left\langle {1,t} \right\rangle \) must be 0, that is\(\int_{ - 2}^2 {tdt} = 0\).

02

Use Gram Schmidt process

According to Gram Schmidt process, the third element in the orthogonal basis span\(\left\{ {1,t,{t^2}} \right\}\)can be defined as\({t^2} - \frac{{\left\langle {{t^2},1} \right\rangle }}{{\left\langle {1,1} \right\rangle }}1 - \frac{{\left\langle {{t^2},t} \right\rangle }}{{\left\langle {t,t} \right\rangle }}t\).

Find\(\left\langle {{t^2},1} \right\rangle ,\,\left\langle {1,1} \right\rangle ,\,\left\langle {t,t} \right\rangle \), as follows:

\(\begin{aligned}{}\left\langle {t,t} \right\rangle &= \int_{ - 2}^2 {{t^2}dt} \\ &= \left( {\frac{{{t^3}}}{3}} \right)_{ - 2}^2\\ &= \left( {\frac{8}{3} - \left( { - \frac{8}{3}} \right)} \right)\\ &= \frac{{16}}{3}\end{aligned}\)

\(\begin{aligned}{}\left\langle {1,1} \right\rangle &= \int_{ - 2}^2 {1dt} \\ &= \left( t \right)_{ - 2}^2\\ &= \left( {2 - \left( { - 2} \right)} \right)\\& = 4\end{aligned}\)

\(\begin{aligned}{}\left\langle {{t^2},t} \right\rangle &= \int_{ - 2}^2 {{t^3}dt} \\ &= \left( {\frac{{{t^4}}}{4}} \right)_{ - 2}^2\\ &= \left( {\frac{{16}}{4} - \frac{{16}}{4}} \right)\\ &= 0\end{aligned}\)

03

Simplify for Gram Schmidt inequality

Plug the above obtained values in \({t^2} - \frac{{\left\langle {{t^2},1} \right\rangle }}{{\left\langle {1,1} \right\rangle }}1 - \frac{{\left\langle {{t^2},t} \right\rangle }}{{\left\langle {t,t} \right\rangle }}t\) and simplify as follows:

\(\begin{aligned}{}{t^2} - \frac{{\left\langle {{t^2},1} \right\rangle }}{{\left\langle {1,1} \right\rangle }}1 - \frac{{\left\langle {{t^2},t} \right\rangle }}{{\left\langle {t,t} \right\rangle }}t &= {t^2} - \frac{{16/3}}{4}1 - \left( 0 \right)t\\ &= {t^2} - \frac{4}{3}\end{aligned}\)

The third element in the orthogonal basis for subspace spanned by the polynomials \(1,\,t,\,{t^2}\)can be obtained by scaling\({t^2} - \frac{4}{3}\)by 3, to get it as\(3{t^2} - 4\).

Thus, the orthogonal basis is \(\left\{ {1,\,t,\,3{t^2} - 4} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) be an orthonormal set in \({\mathbb{R}^n}\). Verify the following inequality, called Bessel’s inequality, which is true for each x in \({\mathbb{R}^n}\):

\({\left\| {\bf{x}} \right\|^2} \ge {\left| {{\bf{x}} \cdot {{\bf{v}}_1}} \right|^2} + {\left| {{\bf{x}} \cdot {{\bf{v}}_2}} \right|^2} + \ldots + {\left| {{\bf{x}} \cdot {{\bf{v}}_p}} \right|^2}\)

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

2. \(A = \left( {\begin{aligned}{{}{}}{\bf{2}}&{\bf{1}}\\{ - {\bf{2}}}&{\bf{0}}\\{\bf{2}} {\bf{3}}\end{aligned}} \right)\), \(b = \left( {\begin{aligned}{{}{}}{ - {\bf{5}}}\\{\bf{8}}\\{\bf{1}}\end{aligned}} \right)\)

In Exercises 1-4, find the equation \(y = {\beta _0} + {\beta _1}x\) of the least-square line that best fits the given data points.

4. \(\left( {2,3} \right),\left( {3,2} \right),\left( {5,1} \right),\left( {6,0} \right)\)

Find an orthogonal basis for the column space of each matrix in Exercises 9-12.

11. \(\left( {\begin{aligned}{{}{}}1&2&5\\{ - 1}&1&{ - 4}\\{ - 1}&4&{ - 3}\\1&{ - 4}&7\\1&2&1\end{aligned}} \right)\)

Let \({\mathbb{R}^{\bf{2}}}\) have the inner product of Example 1. Show that the Cauchy-Schwarz inequality holds for \({\bf{x}} = \left( {{\bf{3}}, - {\bf{2}}} \right)\) and \({\bf{y}} = \left( { - {\bf{2}},{\bf{1}}} \right)\). (Suggestion: Study \({\left| {\left\langle {{\bf{x}},{\bf{y}}} \right\rangle } \right|^{\bf{2}}}\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free