Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Describe all least-squares solutions of the system.

\(\begin{aligned}{}x + y &= 2\\x + y &= 4\end{aligned}\)

Short Answer

Expert verified

The solution is the set of all \(\left( {x,y} \right)\) such that \(x + y = 3\).

Step by step solution

01

System of equations in matrix form

The matrix form of system of equations is as follows:

\(\begin{aligned}{}Ax &= b\\\left( {\begin{aligned}{{}}1&1\\1&1\end{aligned}} \right)\left( {\begin{aligned}{{}}x\\y\end{aligned}} \right) &= \left( {\begin{aligned}{{}}2\\4\end{aligned}} \right)\end{aligned}\)

02

Compute the normal equations

The normal equation has the form of \(\left( {{A^T}A} \right)x = {A^T}b\).

For the given case, the normal equation will be:

\(\begin{aligned}{}\left( {\left( {\begin{aligned}{{}}1&1\\1&1\end{aligned}} \right)\left( {\begin{aligned}{{}}1&1\\1&1\end{aligned}} \right)} \right)\left( {\begin{aligned}{{}}x\\y\end{aligned}} \right) &= \left( {\left( {\begin{aligned}{{}}1&1\\1&1\end{aligned}} \right)\left( {\begin{aligned}{{}}2\\4\end{aligned}} \right)} \right)\\\left( {\begin{aligned}{{}}2&2\\2&2\end{aligned}} \right)\left( {\begin{aligned}{{}}x\\y\end{aligned}} \right) &= \left( {\begin{aligned}{{}}6\\6\end{aligned}} \right)\end{aligned}\)

Above matrix can be converted into system of equation as follows:

\(\begin{aligned}{}2x + 2y = 6\\2x + 2y = 6\end{aligned}\)

Which gives the solution as \(x + y = 3\).

Hence, the solution is the set of all \(\left( {x,y} \right)\) such that \(x + y = 3\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given data for a least-squares problem, \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\), the following abbreviations are helpful:

\(\begin{aligned}{l}\sum x = \sum\nolimits_{i = 1}^n {{x_i}} ,{\rm{ }}\sum {{x^2}} = \sum\nolimits_{i = 1}^n {x_i^2} ,\\\sum y = \sum\nolimits_{i = 1}^n {{y_i}} ,{\rm{ }}\sum {xy} = \sum\nolimits_{i = 1}^n {{x_i}{y_i}} \end{aligned}\)

The normal equations for a least-squares line \(y = {\hat \beta _0} + {\hat \beta _1}x\)may be written in the form

\(\begin{aligned}{{\hat \beta }_0} + {{\hat \beta }_1}\sum x = \sum y \\{{\hat \beta }_0}\sum x + {{\hat \beta }_1}\sum {{x^2}} = \sum {xy} {\rm{ (7)}}\end{aligned}\)

16. Use a matrix inverse to solve the system of equations in (7) and thereby obtain formulas for \({\hat \beta _0}\) , and that appear in many statistics texts.

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}{ 2}\\{ - 7}\\{-1}\end{align}} \right]\), \(\left[ {\begin{align}{ - 6}\\{ - 3}\\9\end{align}} \right]\), \(\left[ {\begin{align}{ 3}\\{ 1}\\{-1}\end{align}} \right]\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

5. \(\left( {\frac{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}} \right){\mathop{\rm v}\nolimits} \)

Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

4.\(y = \left[ {\begin{aligned}{\bf{6}}\\{\bf{3}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{3}}\\{\bf{4}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{4}}}\\{\bf{3}}\\{\bf{0}}\end{aligned}} \right]\)

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

10.\[y = \left[ {\begin{aligned}3\\4\\5\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\1\\0\\{ - 1}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\0\\1\\1\end{aligned}} \right]\],\[{{\bf{u}}_3} = \left[ {\begin{aligned}0\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free