Chapter 6: Q24E (page 331)
Verify the parallelogram law for vectors \({\bf{u}}\) and \({\bf{v}}\) in \({\mathbb{R}^3}\):\({\left\| {{\bf{u}} + {\bf{v}}} \right\|^2} + {\left\| {{\bf{u}} - {\bf{v}}} \right\|^2} = 2{\left\| {\bf{u}} \right\|^2} + 2{\left\| {\bf{v}} \right\|^2}\).
Short Answer
It is verified that, \({\left\| {{\bf{u}} + {\bf{v}}} \right\|^2} + {\left\| {{\bf{u}} - {\bf{v}}} \right\|^2} = 2{\left\| {\bf{u}} \right\|^2} + 2{\left\| {\bf{v}} \right\|^2}\).