Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 21–24 refer to \(V = C\left( {0,1} \right)\) with the inner product given by an integral, as in Example 7.

24. Compute \(\left\| g \right\|\) for \(g\) in Exercise 22.

Short Answer

Expert verified

The required value is \(\left\| g \right\| = \frac{1}{{\sqrt {105} }}\).

Step by step solution

01

Use the given information

For the pair of vectors\(\left\langle {f,g} \right\rangle \), the inner product is given by \(\left\langle {f,g} \right\rangle = \int_0^1 {f\left( t \right)g\left( t \right)dt} \).

It is given that \(g\left( t \right) = {t^3} - {t^2}\), then \(\left\langle {g,g} \right\rangle = \int_0^1 {g\left( t \right)g\left( t \right)dt} \)and\(\left\| g \right\| = \sqrt {\left\langle {g,g} \right\rangle } \).

02

Find the inner product

Plug the expression for\(g\left( t \right)\)into inner product\(\left\langle {g,g} \right\rangle = \int_0^1 {g\left( t \right)g\left( t \right)dt} \), as follows:

\(\begin{aligned}{}\left\langle {g,g} \right\rangle &= \int_0^1 {g\left( t \right)g\left( t \right)dt} \\ &= \int_0^1 {\left( {{t^3} - {t^2}} \right)\left( {{t^3} - {t^2}} \right)dt} \\ &= \int_0^1 {\left( {{t^6} - 2{t^5} + {t^4}} \right)\,dt} \\ &= \left( {\frac{{{t^7}}}{7} - \frac{{2{t^6}}}{6} + \frac{{{t^5}}}{5}} \right)_0^1\\ &= \left( {\frac{1}{7} - \frac{1}{3} + \frac{1}{5} - 0} \right)\\ &= \frac{1}{{105}}\end{aligned}\)

03

Compute \(\left\| g \right\|\) 

Plugthe expression for\(\left\langle {g,g} \right\rangle \)into\(\left\| g \right\| = \sqrt {\left\langle {g,g} \right\rangle } \)and simplify as follows:

\(\begin{aligned}{}\left\| g \right\| &= \sqrt {\left\langle {g,g} \right\rangle } \\ &= \sqrt {\frac{1}{{105}}} \\ &= \frac{1}{{\sqrt {105} }}\end{aligned}\)

Hence, the required value is, \(\left\| g \right\| = \frac{1}{{\sqrt {105} }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 11 and 12, find the closest point to\[{\bf{y}}\]in the subspace\[W\]spanned by\[{{\bf{v}}_1}\], and\[{{\bf{v}}_2}\].

11.\[y = \left[ {\begin{aligned}3\\1\\5\\1\end{aligned}} \right]\],\[{{\bf{v}}_1} = \left[ {\begin{aligned}3\\1\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{v}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\1\\{ - 1}\end{aligned}} \right]\]

In Exercises 9-12, find a unit vector in the direction of the given vector.

11. \(\left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\)

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[{\bf{y}}\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

5.\[y = \left[ {\begin{aligned}{ - 1}\\2\\6\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}3\\{ - 1}\\2\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}1\\{ - 1}\\{ - 2}\end{aligned}} \right]\]

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}{ 2}\\{ - 7}\\{-1}\end{align}} \right]\), \(\left[ {\begin{align}{ - 6}\\{ - 3}\\9\end{align}} \right]\), \(\left[ {\begin{align}{ 3}\\{ 1}\\{-1}\end{align}} \right]\)

Let \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) be an orthonormal set in \({\mathbb{R}^n}\). Verify the following inequality, called Bessel’s inequality, which is true for each x in \({\mathbb{R}^n}\):

\({\left\| {\bf{x}} \right\|^2} \ge {\left| {{\bf{x}} \cdot {{\bf{v}}_1}} \right|^2} + {\left| {{\bf{x}} \cdot {{\bf{v}}_2}} \right|^2} + \ldots + {\left| {{\bf{x}} \cdot {{\bf{v}}_p}} \right|^2}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free