Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose \(A = QR\) is a \(QR\) factorization of an \(m \times n\) matrix

A (with linearly independent columns). Partition \(A\) as \(\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right]\), where \({A_1}\) has \(p\) columns. Show how to obtain a \(QR\) factorization of \({A_1}\), and explain why your factorization has the appropriate properties.

Short Answer

Expert verified

It is shown that how to obtain a \(QR\) factorization of \({A_1}\).

Step by step solution

01

\(QR\) factorization of a Matrix

A matrix with order \(m \times n\) can be written as the multiplication of an upper triangular matrix \(R\) and a matrix \(Q\) which is formed by applying the Gram–Schmidt orthogonalization processto the \({\rm{col}}\left( A \right)\).

The matrix \(R\) can be found by the formula \({Q^T}A = R\).

02

Obtain \(QR\) factorization of  \(A\)

Given that \(A = QR\).

Since \(\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right]\) is the partition of\(A\), we can also obtain \(Q\) as portioned such as \(Q = \left[ {\begin{aligned}{{}{}}{{Q_1}}&{{Q_2}}\end{aligned}} \right]\), where both \({A_1}\) and \({Q_1}\) have \(p\) columns.

Now we can partition \(R\) as

\(R = \left[ {\begin{aligned}{{}{}}B&C\\0&D\end{aligned}} \right]\)

Here the matrix \(B\) is \(p \times p\).

Then, find \(A = QR\).

\(\begin{aligned}{}\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right] = \left[ {\begin{aligned}{{}{}}{{Q_1}}&{{Q_2}}\end{aligned}} \right]\left[ {\begin{aligned}{{}{}}B&C\\0&D\end{aligned}} \right]\\\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right] = \left[ {\begin{aligned}{{}{}}{{Q_1}B}&{{Q_1}}\end{aligned}C + {Q_2}D} \right]\end{aligned}\)

On comparing both sides, we get\({A_1} = {Q_1}B\), this the \(QR\) factorization of matrix\({A_1}\).

Since,\({Q_1}\) is obtained from \(Q\), thus the columns of \({Q_1}\) are orthonormal.

Also \(B\) is an upper triangular since it is in the 1st entry of the partition. Also, the diagonal entries of the matrix \(B\) are positive since these entries are from the diagonal entries of \(R\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

17. a.If \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\) is an orthogonal basis for\(W\), then multiplying

\({v_3}\)by a scalar \(c\) gives a new orthogonal basis \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},c{{\bf{v}}_3}} \right\}\).

b. The Gram–Schmidt process produces from a linearly independent

set \(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)an orthogonal set \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) with the property that for each \(k\), the vectors \({{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}\) span the same subspace as that spanned by \({{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}\).

c. If \(A = QR\), where \(Q\) has orthonormal columns, then \(R = {Q^T}A\).

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

3. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{ - {\bf{2}}}\\{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}\\{\bf{2}}&{\bf{5}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{4}}}\\{\bf{2}}\end{aligned}} \right)\)

In Exercises 3–6, verify that\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\]is an orthogonal set, and then find the orthogonal projection of\[y\]onto Span\[\left\{ {{{\bf{u}}_1},{{\bf{u}}_2}} \right\}\].

6.\[{\rm{y}} = \left[ {\begin{aligned}6\\4\\1\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}{ - 4}\\{ - 1}\\1\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}0\\1\\1\end{aligned}} \right]\]

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

7.\[y = \left[ {\begin{aligned}1\\3\\5\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\]

Suppose the x-coordinates of the data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\) are in mean deviation form, so that \(\sum {{x_i}} = 0\). Show that if \(X\) is the design matrix for the least-squares line in this case, then \({X^T}X\) is a diagonal matrix.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free