Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 21–24 refer to \(V = C\left( {0,1} \right)\) with the inner product given by an integral, as in Example 7.

23. Compute \(\left\| f \right\|\) for \(f\) in Exercise 21.

Short Answer

Expert verified

The required value is,\(\left\| f \right\| = \frac{2}{{\sqrt 5 }}\).

Step by step solution

01

Use the given information

For the pair of vectors\(\left\langle {f,g} \right\rangle \), the inner product is given by \(\left\langle {f,g} \right\rangle = \int_0^1 {f\left( t \right)g\left( t \right)dt} \).

It is given that \(f\left( t \right) = 1 - 3{t^2}\), then \(\left\langle {f,f} \right\rangle = \int_0^1 {f\left( t \right)f\left( t \right)dt} \)and\(\left\| f \right\| = \sqrt {\left\langle {f,f} \right\rangle } \).

02

Find the inner product

Plug the expression for\(f\left( t \right)\)into the inner product formula\(\left\langle {f,f} \right\rangle = \int_0^1 {f\left( t \right)f\left( t \right)dt} \), as follows:

\(\begin{aligned}{}\left\langle {f,f} \right\rangle &= \int_0^1 {f\left( t \right)f\left( t \right)dt} \\ &= \int_0^1 {\left( {1 - 3{t^2}} \right)\left( {1 - 3{t^2}} \right)dt} \\ &= \int_0^1 {\left( {9{t^4} - 6{t^2} + 1} \right)\,\,dt} \\ &= \left( {\frac{{9{t^5}}}{5} - \frac{{6{t^3}}}{3} + t} \right)_0^1\\ &= \left( {\frac{9}{5} - 2 + 1 - 0} \right)\\ &= \frac{4}{5}\end{aligned}\)

03

Compute \(\left\| f \right\|\)

Plug the expression for\(\left\langle {f,f} \right\rangle \)into\(\left\| f \right\| = \sqrt {\left\langle {f,f} \right\rangle } \)and simplify as follows:

\(\begin{aligned}{}\left\| f \right\| &= \sqrt {\left\langle {f,f} \right\rangle } \\ &= \sqrt {\frac{4}{5}} \\ &= \frac{2}{{\sqrt 5 }}\end{aligned}\)

Hence, the required value is \(\left\| f \right\| = \frac{2}{{\sqrt 5 }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 11 and 12, find the closest point to \[{\bf{y}}\] in the subspace \[W\] spanned by \[{{\bf{v}}_1}\], and \[{{\bf{v}}_2}\].

12. \[y = \left[ {\begin{aligned}3\\{ - 1}\\1\\{13}\end{aligned}} \right]\], \[{{\bf{v}}_1} = \left[ {\begin{aligned}1\\{ - 2}\\{ - 1}\\2\end{aligned}} \right]\], \[{{\bf{v}}_2} = \left[ {\begin{aligned}{ - 4}\\1\\0\\3\end{aligned}} \right]\]

Show that if an \(n \times n\) matrix satisfies \(\left( {U{\bf{x}}} \right) \cdot \left( {U{\bf{y}}} \right) = {\bf{x}} \cdot {\bf{y}}\) for all x and y in \({\mathbb{R}^n}\), then \(U\) is an orthogonal matrix.

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

8. \(\left\| {\mathop{\rm x}\nolimits} \right\|\)

In Exercises 5 and 6, describe all least squares solutions of the equation \(A{\bf{x}} = {\bf{b}}\).

6.\(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}\end{aligned}} \right)\),\({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{7}}\\{\bf{2}}\\{\bf{3}}\\{\bf{6}}\\{\bf{5}}\\{\bf{4}}\end{aligned}} \right)\)

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

a. If \(W = {\rm{span}}\left\{ {{x_1},{x_2},{x_3}} \right\}\) with \({x_1},{x_2},{x_3}\) linearly independent,

and if \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is an orthogonal set in \(W\) , then \(\left\{ {{v_1},{v_2},{v_3}} \right\}\) is a basis for \(W\) .

b. If \(x\) is not in a subspace \(W\) , then \(x - {\rm{pro}}{{\rm{j}}_W}x\) is not zero.

c. In a \(QR\) factorization, say \(A = QR\) (when \(A\) has linearly

independent columns), the columns of \(Q\) form an

orthonormal basis for the column space of \(A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free