Chapter 6: Q20E (page 331)
Let \({\rm{u}} = \left( \begin{array}{l}a\\b\end{array} \right)\)and\({\rm{v}} = \left( \begin{array}{l}1\\1\end{array} \right)\). Use the Cauchy–Schwarz inequality to show that \({\left( {\frac{{a + b}}{2}} \right)^2} \le \frac{{{a^2} + {b^2}}}{2}\).
Short Answer
The inequality \({\left( {\frac{{a + b}}{2}} \right)^2} \le \frac{{{a^2} + {b^2}}}{2}\) is proved to be true.