Chapter 6: Q20E (page 331)
Let \(A\) be an \(m \times n\) matrix such that \({A^T}A\) is invertible. Show that the columns of \(A\) are linearly independent.
Short Answer
It is proved that columns of \(A\) are linearly independent.
Chapter 6: Q20E (page 331)
Let \(A\) be an \(m \times n\) matrix such that \({A^T}A\) is invertible. Show that the columns of \(A\) are linearly independent.
It is proved that columns of \(A\) are linearly independent.
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: In Exercises 1 and 2, you may assume that\(\left\{ {{{\bf{u}}_{\bf{1}}},...,{{\bf{u}}_{\bf{4}}}} \right\}\)is an orthogonal basis for\({\mathbb{R}^{\bf{4}}}\).
2.\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{2}}}\\{\bf{1}}\\{ - {\bf{1}}}\\{\bf{1}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{3}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\\{ - {\bf{1}}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{4}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{1}}\\{ - {\bf{2}}}\end{aligned}} \right]\),\({\bf{x}} = \left[ {\begin{aligned}{\bf{4}}\\{\bf{5}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right]\)
Write v as the sum of two vectors, one in\({\bf{Span}}\left\{ {{{\bf{u}}_1}} \right\}\)and the other in\({\bf{Span}}\left\{ {{{\bf{u}}_2},{{\bf{u}}_3},{{\bf{u}}_{\bf{4}}}} \right\}\).
Question: In exercises 1-6, determine which sets of vectors are orthogonal.
\(\left[ {\begin{align}1\\{ - 2}\\1\end{align}} \right]\), \(\left[ {\begin{align}0\\1\\2\end{align}} \right]\), \(\left[ {\begin{align}{ - 5}\\{ - 2}\\1\end{align}} \right]\)
Find the distance between \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}0\\{ - 5}\\2\end{aligned}} \right)\) and \({\mathop{\rm z}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 4}\\{ - 1}\\8\end{aligned}} \right)\).
Let \(X\) be the design matrix used to find the least square line of fit data \(\left( {{x_1},{y_1}} \right), \ldots ,\left( {{x_n},{y_n}} \right)\). Use a theorem in Section 6.5 to show that the normal equations have a unique solution if and only if the data include at least two data points with different \(x\)-coordinates.
[M] Let \({f_{\bf{4}}}\) and \({f_{\bf{5}}}\) be the fourth-order and fifth order Fourier approximations in \(C\left[ {{\bf{0}},{\bf{2}}\pi } \right]\) to the square wave function in Exercise 10. Produce separate graphs of \({f_{\bf{4}}}\) and \({f_{\bf{5}}}\) on the interval \(\left[ {{\bf{0}},{\bf{2}}\pi } \right]\), and produce graph of \({f_{\bf{5}}}\) on \(\left[ { - {\bf{2}}\pi ,{\bf{2}}\pi } \right]\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.