Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A\) be an \(m \times n\) matrix. Use the steps below to show that a vector \(x\) in \({\mathbb{R}^n}\) satisfies \(Ax = 0\) if and only if \({A^T}Ax = 0\). This will show that \({\rm{Nul}}\,A = {\rm{Nul}}\,{A^T}A\).

  1. Show that if \(Ax = 0\), then \({A^T}Ax = 0\).
  2. Suppose \({A^T}Ax = 0\). Explain why \({x^T}{A^T}Ax = 0\),and use this to show that \(Ax = 0\).

Short Answer

Expert verified
  1. It is proved that if \(Ax = 0\), then \({A^T}Ax = 0\).
  2. \({A^T}Ax = 0\) because \({\left\| {Ax} \right\|^2} = 0\), so \(Ax = 0\).

Step by step solution

01

(a) Step 1: Calculation for part (a)

Given that \(Ax = 0\). Multiply both sides by \({A^T}\) in the given equation and solve as follows:

\(\begin{aligned}{}{A^T}\left( {Ax} \right) &= {A^T}\left( 0 \right)\\{A^T}Ax & = 0\\\left( {{A^T}A} \right)x & = 0\end{aligned}\)

The above calculation shows that \(x \in {\rm{Nul}}\,{A^T}A\). Hence, \({\rm{Nul}}\,A\) is a subsetof \({\rm{Nul}}\,{A^T}A\).

02

(b) Step 2: Calculation of part (b)

Suppose \({A^T}Ax = 0\). Simplify \({x^T}{A^T}Ax\) as follows:

\(\begin{aligned}{}{x^T}{A^T}Ax & = {x^T}\left( {{A^T}Ax} \right)\\ & = {x^T}\left( {\left( {{A^T}A} \right)x} \right)\\ & = {x^T}\left( 0 \right)\\ & = 0\end{aligned}\)

Since, \({x^T}{A^T}Ax = {\left( {Ax} \right)^T}Ax\). So, \({\left( {Ax} \right)^T}Ax = 0\).

The above calculation implies that \({\left\| {Ax} \right\|^2} = 0\). This is possible if \(Ax = 0\).

This shows that \({\rm{Nul}}\,{A^T}A\)is a subset of \({\rm{Nul}}\,A\).

From part (a), we have \({\rm{Nul}}\,A\) is asubset of \({\rm{Nul}}\,{A^T}A\) and from part (b), we have \({\rm{Nul}}\,{A^T}A\) is a subsetof \({\rm{Nul}}\,A\). Hence, \({\rm{Nul}}\,A = {\rm{Nul}}\,{A^T}A\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

2. \(A = \left( {\begin{aligned}{{}{}}{\bf{2}}&{\bf{1}}\\{ - {\bf{2}}}&{\bf{0}}\\{\bf{2}} {\bf{3}}\end{aligned}} \right)\), \(b = \left( {\begin{aligned}{{}{}}{ - {\bf{5}}}\\{\bf{8}}\\{\bf{1}}\end{aligned}} \right)\)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}{ 2}\\{ - 7}\\{-1}\end{align}} \right]\), \(\left[ {\begin{align}{ - 6}\\{ - 3}\\9\end{align}} \right]\), \(\left[ {\begin{align}{ 3}\\{ 1}\\{-1}\end{align}} \right]\)

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

3. \(A = \left( {\begin{aligned}{{}{}}{\bf{1}}&{ - {\bf{2}}}\\{ - {\bf{1}}}&{\bf{2}}\\{\bf{0}}&{\bf{3}}\\{\bf{2}}&{\bf{5}}\end{aligned}} \right)\), \({\bf{b}} = \left( {\begin{aligned}{{}{}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{4}}}\\{\bf{2}}\end{aligned}} \right)\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

5. \(\left( {\frac{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}{{{\mathop{\rm v}\nolimits} \cdot {\mathop{\rm v}\nolimits} }}} \right){\mathop{\rm v}\nolimits} \)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{array}{*{20}{c}}3\\{-2}\\1\\3\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{-1}\\3\\{-3}\\4\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}3\\8\\7\\0\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free