Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

17. a.If \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\) is an orthogonal basis for\(W\), then multiplying

\({v_3}\)by a scalar \(c\) gives a new orthogonal basis \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},c{{\bf{v}}_3}} \right\}\).

b. The Gram–Schmidt process produces from a linearly independent

set \(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)an orthogonal set \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) with the property that for each \(k\), the vectors \({{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}\) span the same subspace as that spanned by \({{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}\).

c. If \(A = QR\), where \(Q\) has orthonormal columns, then \(R = {Q^T}A\).

Short Answer

Expert verified

a. False, because this statement is true when \(c \ne 0\).

b. True, because \({\rm{span}}\left\{ {{x_1}, \ldots ,{x_p}} \right\} = {\rm{span}}\left\{ {{v_1}, \ldots ,{v_p}} \right\}\).

c. True, by using the definition of \(QR\) factorization of a matrix.

Step by step solution

01

\(QR\) factorization of a Matrix

A matrix which has order \(m \times n\) can be written as the multiplication of a upper triangular matrix \(R\) and a matrix \(Q\) which is formed by applying Gram–Schmidt orthogonalization process to the \({\rm{col}}\left( A \right)\).

The matrix \(R\) can be found by the formula \({Q^T}A = R\).

02

Checking whether the given statements are true of false

a.

This is false. Because this statement is true when \(c \ne 0\).

If \(c = 0\), then we will have \(\left\{ {{v_1},{v_2},0} \right\}\). We know that any set containing zero vector is not a linearly independent set.

b.

The given statement is true. From the Theorem 11, since \(\left\{ {{x_1}, \ldots ,{x_p}} \right\}\)gives the set of orthogonal vectors \(\left\{ {{v_1}, \ldots ,{v_p}} \right\}\), thus we have

\({\rm{span}}\left\{ {{x_1}, \ldots ,{x_p}} \right\} = {\rm{span}}\left\{ {{v_1}, \ldots ,{v_p}} \right\}\).

c.

The statement is true. From the definition of \(QR\) factorization of a matrix it is true.

We have \({Q^T}Q = I\), since the columns of the matrix \(Q\) are orthonormal.

\(\begin{aligned}{}A &= QR\\{Q^T}A &= {Q^T}QR\\{Q^T}A &= IR\\{Q^T}A &= R\end{aligned}\)

Thus, the statement is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({{\bf{u}}_1},......,{{\bf{u}}_p}\) be an orthogonal basis for a subspace \(W\) of \({\mathbb{R}^n}\), and let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be defined by \(T\left( x \right) = {\rm{pro}}{{\rm{j}}_W}x\). Show that \(T\) is a linear transformation.

A healthy child’s systolic blood pressure (in millimetres of mercury) and weight (in pounds) are approximately related by the equation

\({\beta _0} + {\beta _1}\ln w = p\)

Use the following experimental data to estimate the systolic blood pressure of healthy child weighing 100 pounds.

\(\begin{array} w&\\ & {44}&{61}&{81}&{113}&{131} \\ \hline {\ln w}&\\vline & {3.78}&{4.11}&{4.39}&{4.73}&{4.88} \\ \hline p&\\vline & {91}&{98}&{103}&{110}&{112} \end{array}\)

Suppose \(A = QR\) is a \(QR\) factorization of an \(m \times n\) matrix

A (with linearly independent columns). Partition \(A\) as \(\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right]\), where \({A_1}\) has \(p\) columns. Show how to obtain a \(QR\) factorization of \({A_1}\), and explain why your factorization has the appropriate properties.

Question: In Exercises 3-6, verify that\(\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\)is an orthogonal set, and then find the orthogonal projection of y onto\({\bf{Span}}\left\{ {{{\bf{u}}_{\bf{1}}},{{\bf{u}}_{\bf{2}}}} \right\}\).

3.\[y = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{4}}\\{\bf{3}}\end{aligned}} \right]\],\({{\bf{u}}_{\bf{1}}} = \left[ {\begin{aligned}{\bf{1}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right]\),\({{\bf{u}}_{\bf{2}}} = \left[ {\begin{aligned}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{0}}\end{aligned}} \right]\)

In Exercises 9-12, find a unit vector in the direction of the given vector.

11. \(\left( {\begin{aligned}{*{20}{c}}{\frac{7}{4}}\\{\frac{1}{2}}\\1\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free