Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine which pairs of vectors in Exercises \(15 - 18\) are orthogonal.

17. \({\bf{u}} = \left( {\begin{aligned}{3}\\2\\{ - 5}\\0\end{aligned}} \right),\,\,{\bf{v}} = \left( {\begin{aligned}{ - 4}\\1\\{ - 2}\\6\end{aligned}} \right)\)

Short Answer

Expert verified

The vectors \({\bf{u}}{\rm{ and }}{\bf{v}}\) are orthogonal to each other.

Step by step solution

01

Definition of orthogonal vectors

The two vectors \({\bf{u}}{\rm{ and }}{\bf{v}}\) are Orthogonal if \({\bf{u}} \cdot {\bf{v}} = 0\).

02

Checking Orthogonality for given vectors

The given vectors are:

\({\bf{u}} = \left( {\begin{aligned}{*{20}{r}}3\\2\\{ - 5}\\0\end{aligned}} \right),\,\,{\bf{v}} = \left( {\begin{aligned}{*{20}{r}}{ - 4}\\1\\{ - 2}\\6\end{aligned}} \right)\)

On having dot products, we get:

\(\begin{aligned}{c}{\bf{u}} \cdot {\bf{v}} = \left( {\begin{aligned}{*{20}{r}}3\\2\\{ - 5}\\0\end{aligned}} \right) \cdot \left( {\begin{aligned}{*{20}{r}}{ - 4}\\1\\{ - 2}\\6\end{aligned}} \right)\\ = \left( 3 \right)\left( { - 4} \right) + \left( 2 \right)\left( 1 \right) + \left( { - 5} \right)\left( { - 2} \right) + \left( 0 \right)\left( 6 \right)\\ = - 12 + 2 + 10 + 0\\ = 0\end{aligned}\)

Since \({\bf{u}} \cdot {\bf{v}} = 0\).

Hence, the vectors \({\bf{u}}{\rm{ and }}{\bf{v}}\) are orthogonal to each other.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the Gram–Schmidt process as in Example 2 to produce an orthogonal basis for the column space of

\(A = \left( {\begin{aligned}{{}{r}}{ - 10}&{13}&7&{ - 11}\\2&1&{ - 5}&3\\{ - 6}&3&{13}&{ - 3}\\{16}&{ - 16}&{ - 2}&5\\2&1&{ - 5}&{ - 7}\end{aligned}} \right)\)

A certain experiment produce the data \(\left( {1,7.9} \right),\left( {2,5.4} \right)\) and \(\left( {3, - .9} \right)\). Describe the model that produces a least-squares fit of these points by a function of the form

\(y = A\cos x + B\sin x\)

Suppose \(A = QR\) is a \(QR\) factorization of an \(m \times n\) matrix

A (with linearly independent columns). Partition \(A\) as \(\left[ {\begin{aligned}{{}{}}{{A_1}}&{{A_2}}\end{aligned}} \right]\), where \({A_1}\) has \(p\) columns. Show how to obtain a \(QR\) factorization of \({A_1}\), and explain why your factorization has the appropriate properties.

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

2. \(\left( {\begin{aligned}{{}{}}0\\4\\2\end{aligned}} \right),\left( {\begin{aligned}{{}{}}5\\6\\{ - 7}\end{aligned}} \right)\)

In Exercises 17 and 18, all vectors and subspaces are in \({\mathbb{R}^n}\). Mark each statement True or False. Justify each answer.

17. a.If \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\) is an orthogonal basis for\(W\), then multiplying

\({v_3}\)by a scalar \(c\) gives a new orthogonal basis \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},c{{\bf{v}}_3}} \right\}\).

b. The Gram–Schmidt process produces from a linearly independent

set \(\left\{ {{{\bf{x}}_1}, \ldots ,{{\bf{x}}_p}} \right\}\)an orthogonal set \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) with the property that for each \(k\), the vectors \({{\bf{v}}_1}, \ldots ,{{\bf{v}}_k}\) span the same subspace as that spanned by \({{\bf{x}}_1}, \ldots ,{{\bf{x}}_k}\).

c. If \(A = QR\), where \(Q\) has orthonormal columns, then \(R = {Q^T}A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free