Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the inner product axioms and other results of this section to verify the statements in Exercises 15–18.

16. If \(\left\{ {{\rm{u,}}\,{\rm{v}}} \right\}\) is an orthonormal set in \(V\), then \(\left\| {{\rm{u}} - {\rm{v}}} \right\| = \sqrt 2 \).

Short Answer

Expert verified

The statement \(\left\| {{\rm{u}} - {\rm{v}}} \right\| = \sqrt 2 \) is verified.

Step by step solution

01

Apply axiom 2

According to axiom 2, if \({\bf{u}}\) and \({\rm{v}}\) be pair of vectors in a vector space\(V\), then, the inner product on \(V\), relates a real number \(\left\langle {{\bf{u}},{\rm{v}}} \right\rangle \)and satisfies the axiom, \(\left\langle {{\bf{u}} + {\rm{v,}}\,{\rm{w}}} \right\rangle = \left\langle {{\rm{u,w}}} \right\rangle + \left\langle {{\rm{v,w}}} \right\rangle \) for all \({\bf{u}}\), \({\rm{v}}\),\({\rm{w}}\)and scalars \(c\).

Apply axiom 2 to the left side of the given equation, as follows:

\(\begin{aligned}{}{\left\| {{\rm{u}} - {\rm{v}}} \right\|^2} &= \left\langle {{\rm{u}} - {\rm{v,}}\,{\rm{u}} - {\rm{v}}} \right\rangle \\ &= \left\langle {{\rm{u,}}\,{\rm{u}} - {\rm{v}}} \right\rangle - \left\langle {{\rm{v,}}\,{\rm{u}} - {\rm{v}}} \right\rangle \\ &= \left\langle {{\rm{u,}}\,{\rm{u}}} \right\rangle - \left\langle {{\rm{u,v}}} \right\rangle - \left\langle {{\rm{v,}}\,{\rm{u}}} \right\rangle ,\left\langle {{\rm{v,}}\,{\rm{v}}} \right\rangle \end{aligned}\)

02

Apply axiom 1

According to axiom 1, if \({\bf{u}}\) and \({\rm{v}}\) be pair of vectors in a vector space \(V\), then, the inner product on \(V\), relates a real number \(\left\langle {{\bf{u}},{\rm{v}}} \right\rangle \)and satisfies the axiom, \(\left\langle {{\bf{u}},{\rm{v}}} \right\rangle = \left\langle {{\rm{v}},{\rm{u}}} \right\rangle \)for all \({\bf{u}}\), \({\rm{v}}\), \({\rm{w}}\)and scalars \(c\).

Apply axiom 1 to the left side of the given equation, as follows:

\(\begin{aligned}{}{\left\| {{\rm{u}} - {\rm{v}}} \right\|^2} &= \left\langle {{\rm{u,}}\,{\rm{u}}} \right\rangle - \left\langle {{\rm{u,v}}} \right\rangle - \left\langle {{\rm{u,v}}} \right\rangle + \left\langle {{\rm{v,}}\,{\rm{v}}} \right\rangle \\ &= \left\langle {{\rm{u,}}\,{\rm{u}}} \right\rangle - {\rm{2}}\left\langle {{\rm{u,v}}} \right\rangle + \left\langle {{\rm{v,}}\,{\rm{v}}} \right\rangle \end{aligned}\)

03

Use the given information

It is given that \(\left\{ {{\bf{u}},{\rm{v}}} \right\}\) is orthonormal. So, \(\left\langle {{\bf{u}},{\rm{v}}} \right\rangle = 0\)and \({\left\| {\bf{u}} \right\|^2} = {\left\| {\rm{v}} \right\|^2} = 1\).

Apply the obtained results into the resulting equation, as follows:

\(\begin{aligned}{}{\left\| {{\rm{u}} - {\rm{v}}} \right\|^2} &= {\left\| {\rm{u}} \right\|^2} - {\rm{2}}\left\langle {{\rm{u,v}}} \right\rangle + {\left\| {\rm{v}} \right\|^2}\\ &= 1 - 2\left( 0 \right) + 1\\ &= 2\end{aligned}\)

So,\(\left\| {{\rm{u}} - {\rm{v}}} \right\| = \sqrt 2 \)

Thus, the statement\(\left\| {{\rm{u}} - {\rm{v}}} \right\| = \sqrt 2 \) is verified.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-6, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

5. \(\left( {\begin{aligned}{{}{}}1\\{ - 4}\\0\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{}}7\\{ - 7}\\{ - 4}\\1\end{aligned}} \right)\)

Show that if \(U\) is an orthogonal matrix, then any real eigenvalue of \(U\) must be \( \pm 1\).

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

4. \(\frac{1}{{{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} }}{\mathop{\rm u}\nolimits} \)

In Exercises 7–10, let\[W\]be the subspace spanned by the\[{\bf{u}}\]’s, and write y as the sum of a vector in\[W\]and a vector orthogonal to\[W\].

7.\[y = \left[ {\begin{aligned}1\\3\\5\end{aligned}} \right]\],\[{{\bf{u}}_1} = \left[ {\begin{aligned}1\\3\\{ - 2}\end{aligned}} \right]\],\[{{\bf{u}}_2} = \left[ {\begin{aligned}5\\1\\4\end{aligned}} \right]\]

In Exercises 1-4, find a least-sqaures solution of \(A{\bf{x}} = {\bf{b}}\) by (a) constructing a normal equations for \({\bf{\hat x}}\) and (b) solving for \({\bf{\hat x}}\).

1. \(A = \left[ {\begin{aligned}{{}{}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{1}}}&{\bf{3}}\end{aligned}} \right]\), \({\bf{b}} = \left[ {\begin{aligned}{{}{}}{\bf{4}}\\{\bf{1}}\\{\bf{2}}\end{aligned}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free