Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a \(QR\) factorization of the matrix in Exercise 12.

Short Answer

Expert verified

The factorization of the matrix is,\(A = \left( {\begin{aligned}{{}{r}}{\frac{1}{2}}&{ - \frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\\0&{\frac{1}{{\sqrt 2 }}}&0\\{\frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}2&8&7\\0&{2\sqrt 2 }&{3\sqrt 2 }\\0&0&6\end{aligned}} \right)\)

Step by step solution

01

\(QR\) factorization of a Matrix

A matrix with order \(m \times n\) can be written as the multiplication of aupper triangular matrix \(R\) and a matrix \(Q\) which is formed by applying Gram–Schmidt orthogonalization process to the \({\rm{col}}\left( A \right)\).

The matrix \(R\) can be found by the formula \({Q^T}A = R\).

02

Finding the matrix \(R\)

From exercise 11 we have,

\(A = \left( {\begin{aligned}{{}{r}}1&3&5\\{ - 1}&{ - 3}&1\\0&2&3\\1&5&2\\1&5&8\end{aligned}} \right)\)

Again, with help of exercise 12 where we have calculated the orthogonal basis for columns of \(A\) we have

\(\left\{ {\left( {\begin{aligned}{{}{r}}1\\{ - 1}\\0\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}{ - 1}\\1\\2\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}3\\3\\0\\{ - 3}\\3\end{aligned}} \right)} \right\}\)

Now normalizing them we get,

\(\begin{aligned}{}\left\{ {\frac{{{v_1}}}{{\left\| {{v_1}} \right\|}},\frac{{{v_2}}}{{\left\| {{v_2}} \right\|}},\frac{{{v_3}}}{{\left\| {{v_3}} \right\|}}} \right\} & = \left\{ {\frac{{\left( {\begin{aligned}{{}{r}}1\\{ - 1}\\0\\1\\1\end{aligned}} \right)}}{{\sqrt 4 }},\frac{{\left( {\begin{aligned}{{}{r}}{ - 1}\\1\\2\\1\\1\end{aligned}} \right)}}{{\sqrt 8 }},\frac{{\left( {\begin{aligned}{{}{r}}3\\3\\0\\{ - 3}\\3\end{aligned}} \right)}}{{\sqrt {4 \cdot 9} }}} \right\}\\\left\{ {\frac{{{v_1}}}{{\left\| {{v_1}} \right\|}},\frac{{{v_2}}}{{\left\| {{v_2}} \right\|}},\frac{{{v_3}}}{{\left\| {{v_3}} \right\|}}} \right\} & = \left\{ {\left( {\begin{aligned}{{}{r}}{\frac{1}{2}}\\{\frac{{ - 1}}{2}}\\0\\{\frac{1}{2}}\\{\frac{1}{2}}\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}{ - \frac{1}{{2\sqrt 2 }}}\\{\frac{1}{{2\sqrt 2 }}}\\{\frac{1}{{\sqrt 2 }}}\\{\frac{1}{{2\sqrt 2 }}}\\{\frac{1}{{2\sqrt 2 }}}\end{aligned}} \right),\left( {\begin{aligned}{{}{r}}{\frac{1}{2}}\\{\frac{1}{2}}\\0\\{ - \frac{1}{2}}\\{\frac{1}{2}}\end{aligned}} \right)} \right\}\end{aligned}\)

Hence the matrix \(Q\) will be:

\(Q = \left( {\begin{aligned}{{}{r}}{\frac{1}{2}}&{ - \frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\\0&{\frac{1}{{\sqrt 2 }}}&0\\{\frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\end{aligned}} \right)\)

Now, calculate \({Q^T}A = R\) by using \(A\) and \(Q\).

\(\begin{aligned}{}R & = {Q^T}A\\ & = \left( {\begin{aligned}{{}{r}}{\frac{1}{2}}&{ - \frac{1}{2}}&0&{\frac{1}{2}}&{\frac{1}{2}}\\{ - \frac{1}{{2\sqrt 2 }}}&{\frac{1}{{2\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}&{\frac{1}{{2\sqrt 2 }}}&{\frac{1}{{2\sqrt 2 }}}\\{\frac{1}{2}}&{\frac{1}{2}}&0&{\frac{{ - 1}}{2}}&{\frac{1}{2}}\end{aligned}} \right)\left( {\begin{aligned}{{}{r}}1&3&5\\{ - 1}&{ - 3}&1\\0&2&3\\1&5&2\\1&5&8\end{aligned}} \right)\\ & = \left( {\begin{aligned}{{}{}}2&8&7\\0&{2\sqrt 2 }&{3\sqrt 2 }\\0&0&6\end{aligned}} \right)\end{aligned}\)

Hence, the required factorization is,\(A = \left( {\begin{aligned}{{}{r}}{\frac{1}{2}}&{ - \frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\\{ - \frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\\0&{\frac{1}{{\sqrt 2 }}}&0\\{\frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{{2\sqrt 2 }}}&{\frac{1}{2}}\end{aligned}} \right)\left( {\begin{aligned}{{}{}}2&8&7\\0&{2\sqrt 2 }&{3\sqrt 2 }\\0&0&6\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(\left\{ {{{\bf{v}}_1}, \ldots ,{{\bf{v}}_p}} \right\}\) be an orthonormal set in \({\mathbb{R}^n}\). Verify the following inequality, called Bessel’s inequality, which is true for each x in \({\mathbb{R}^n}\):

\({\left\| {\bf{x}} \right\|^2} \ge {\left| {{\bf{x}} \cdot {{\bf{v}}_1}} \right|^2} + {\left| {{\bf{x}} \cdot {{\bf{v}}_2}} \right|^2} + \ldots + {\left| {{\bf{x}} \cdot {{\bf{v}}_p}} \right|^2}\)

Let \({{\bf{u}}_1},......,{{\bf{u}}_p}\) be an orthogonal basis for a subspace \(W\) of \({\mathbb{R}^n}\), and let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be defined by \(T\left( x \right) = {\rm{pro}}{{\rm{j}}_W}x\). Show that \(T\) is a linear transformation.

For a matrix program, the Gram–Schmidt process worksbetter with orthonormal vectors. Starting with \({x_1},......,{x_p}\) asin Theorem 11, let \(A = \left\{ {{x_1},......,{x_p}} \right\}\) . Suppose \(Q\) is an\(n \times k\)matrix whose columns form an orthonormal basis for

the subspace \({W_k}\) spanned by the first \(k\) columns of A. Thenfor \(x\) in \({\mathbb{R}^n}\), \(Q{Q^T}x\) is the orthogonal projection of x onto \({W_k}\) (Theorem 10 in Section 6.3). If \({x_{k + 1}}\) is the next column of \(A\),then equation (2) in the proof of Theorem 11 becomes

\({v_{k + 1}} = {x_{k + 1}} - Q\left( {{Q^T}T {x_{k + 1}}} \right)\)

(The parentheses above reduce the number of arithmeticoperations.) Let \({u_{k + 1}} = \frac{{{v_{k + 1}}}}{{\left\| {{v_{k + 1}}} \right\|}}\). The new \(Q\) for thenext step is \(\left( {\begin{aligned}{{}{}}Q&{{u_{k + 1}}}\end{aligned}} \right)\). Use this procedure to compute the\(QR\)factorization of the matrix in Exercise 24. Write thekeystrokes or commands you use.

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align}{ 2}\\{ - 7}\\{-1}\end{align}} \right]\), \(\left[ {\begin{align}{ - 6}\\{ - 3}\\9\end{align}} \right]\), \(\left[ {\begin{align}{ 3}\\{ 1}\\{-1}\end{align}} \right]\)

In exercises 1-6, determine which sets of vectors are orthogonal.

\(\left[ {\begin{align} 2\\{-5}\\{-3}\end{align}} \right]\), \(\left[ {\begin{align}0\\0\\0\end{align}} \right]\), \(\left[ {\begin{align} 4\\{ - 2}\\6\end{align}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free